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ABSTRACT

The results of this sampling campaign on pilot scale processes aim to evaluate the occurrence and
behavior of trace organic micro-pollutants and metal elements during anion exchange treatment of
surface water and the subsequent treatment of generated spent brine with two types of electrodialysis
membrane pairs. This knowledge is relevant to assess the quality and reusability of secondary products
created during brine treatment; specifically the excess of sodium chloride to be recycled onsite and the
natural organic matter, mostly consisting of humic substances, which find multiple applications in the
agricultural industry. This study highlights that (1) the attachment mechanism of organic micro-
pollutants to anion exchange resin occurs through electrostatic interaction and the subsequent trans-
fer through ion exchange membranes is restricted by size exclusion; and (2) the complexation of trace
metals compounds with the natural organic matter partly explains their removal by anion exchange.
Complexes remain stable during treatment of the brine with electrodialysis.

© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In the drinking water industry, the removal of natural organic
matter (NOM) through anion exchange (AIX) is establishing itself as
a relevant alternative to conventional processes. The benefit is the
removal of the specific fractions with low molecular weight and
negative charges, which are typically difficult to coagulate
(Humbert et al., 2005; Mergen et al., 2008). Global climate change
makes this technology particularly applicable in places where
acidification of water sources (due to acid rains etc.) lead to a
modification of organic matter towards smaller species (Eikebrokk
et al., 2004; Eimers et al., 2008; Evans et al., n.d. Lepisto et al., 2008;
Monteith et al., 2007; Ritson et al., 2014). By removing this specific
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fraction of organics, the technology permits not only a reduction of
taste and odor, it also minimizes the formation of disinfection-by-
products and increases the treatability of the water for down-
stream processes (Kingsbury and Singer, 2013; Metcalfe et al,,
2015).

The generation of a spent brine, inherent to the process, prob-
ably constitutes its main drawback. These brines streams are
characterized by a high conductivity and color due the excess of
sodium chloride from the regenerant solution and the desorbed
NOM and inorganic anions from the raw water. Their disposal can
be considered difficult and expensive which favored the develop-
ment of technologies for brine treatment (Ariono et al., 2016). More
often, the problem is turned around by creating useful secondary
products from brine components. Sodium chloride is the first
possible secondary product that can be reused directly onsite,
reducing in consequence the production, transportation, and spill
of chemicals (Amini et al., 2015; Choe et al.,, 2015). The NOM
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fraction in the spent brine that essentially consists of smaller and
charged fractions due to resin selectivity, is often classified as hu-
mic or fulvic acids. When that is the case, they constitute a
potentially valuable secondary product in circular economies. In
fact humic substances (HS), the general term to describe both
species, have raised interest in many industries lately; e.g., in
livestock breeding HS can reduce the amount of necessary anti-
biotic animals ingest (Islam et al., 2005; Kucukersan et al., 2005), in
open field agriculture, HS can diminish the use of mineral addition
for crops (Lyons and Genc, 2016). These prospects in a time of ever-
tighter regulation are worth the research and development effort
for separation technologies capable of recovering these fractions.
The authors realize that the actual purity of recovered HS will
dictate the benefits of the recovered fractions.

In this work, the separation of spent brine components and
recovery of secondary products is proposed with the use of a two
stages process of electrodialysis (ED), a first stage for recycling a
sodium chloride solution and a second stage for recovering the
humic substances. ED has previously been referred to as a suitable
technology to separate inorganics from organic compounds
(Kabsch-Korbutowicz et al., 2011; Zhang, Y. Pinoy, L. Meesschaert, B.
Van der Bruggen, 2011; Zhang et al., 2009). For the recovery of NaCl,
the anion exchange membranes can be made monovalent selective
either by employing a thin perm-selective surface layer with the
same charge as the transferred ion or by increasing the degree of
crosslinking within the polymer matrix (Vaselbehagh et al., 2015).

The proposed approach was tested at PWN, a water utility in
North Holland. In this setting, illustrated in Fig. 1, AIX treats surface
water from the IJssel lake (1) for NOM removal prior to further
treatment with ceramic microfiltration and advanced oxidation
processes (2). After a certain contact time, the resin is separated and
regenerated with a sodium chloride solution (3) to be reused in the
next cycle. The spent sodium chloride solution (4), or spent brine,
contains the desorbed NOM, but also untargeted anions from the
IJssel lake that had an affinity for the resin: typically nitrate, sul-
phate and bicarbonate and possibly trace pollutants. To separate
and recycle the different chemical components, the brine (4) un-
dergoes a first ED step with monovalent selective anion exchange
and standard cation exchange membranes referred to as the
monovalent selective step until full transfer of chloride ions occurs
to the concentrate (5). In the next step, the diluate (6) enters a
second ED stack equipped with standard anion and cation ex-
change membranes to separate the remaining multivalent salts in
concentrate (8) from the organic matter in solution (7).

raw water from reservoir (1)

v

Three different streams are created from this treatment of the
brine:

- The monovalent salt solution in concentrate 1 (5) consists of
sodium, chloride and bicarbonate to be reused as a fresh salt
solution (3).

- The multivalent salts solution (8), usually dominated by sodium
sulphate.

- The NOM in solution (7) among which the humic and fulvic
acids.

This article covers the effort to assess the fate and removal of
naturally occurring trace pollutants within the drinking water pre-
treatment using AIX, and subsequent brine treatment using ED
leading to the recovery of sodium chloride and NOM. Previous work
on trace pollutant removal with AIX or ED include single assess-
ments of either processes, mostly in a laboratory controlled setting
and targeting only specific compounds of interest. The removal of
organic micro-pollutants with AIX resin was in fact previously
investigated with regards to kinetics (Ba Uerlein et al., 2012; Landry
et al., 2015a; Liu et al., 2011), selectivity of the resin (Landry et al.,
2015b), the competitive effect of the water matrix (Ba Uerlein
et al,, 2012; Neale et al., 2010), and the chemistry involved in the
removal mechanism (Landry et al., 2015a; Liu et al., 2011; Neale
et al., 2010). Most studies highlight the co-existence of several
sorption mechanisms: the electrostatic interaction and physical
interactions driven by hydrophobicity or hydrogen bounding. One
study however has carried the investigation over several adsorp-
tion/regeneration cycles to find the diminishing impact of the non-
electrostatic interactions cycle after cycle (Wang et al., 2016). Trace
metal removal with anion exchange resin in drinking water pro-
duction has been subject to fewer studies. In municipal and in-
dustrial wastewater treatment, the combination of strong base
anion exchange and complexing agents such as EDTA, NTA or newly
developed biodegradable aspartic acid derivatives is used for the
removal of heavy metals with restricted discharge regulation
(Kotodyn;ska, 2011; Kotodynska et al., 2009). ED has been studied
for removal of metals in waste stream decontamination, results
established a relation between the charges and hydrated radius of
ions and their removals (Banasiak and Schafer, 2009). One study
used real brackish water to investigate the influence of the water
matrix on trace metal transportation, which highlights membrane
deposition and neutral complex formation phenomena previously
disregarded in artificial waters (Onorato et al., 2017). Finally the
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Fig. 1. Process scheme ion exchange water production and brine treatment.
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passage of organic micro-pollutants through ion exchange mem-
branes was isolated in (Vanoppen et al., 2015), in which diffusion is
designated as the main transportation mechanism. To the best of
the authors’ knowledge, this is the first attempt to apply and
compare the theories and observations from laboratory scale on the
fate of trace pollutants in AIX and ED to industrial or pilot scale
using natural and un-spiked water. Furthermore, this study differ-
entiates from other studies by offering a complete assessment of
trace pollutants in the combination of relevant technologies
recreated on pilot scale. Anion exchange resin and ion exchange
membranes may, in fact, experience synergetic (or complementary)
effects in compounds interactions. The sampling results also relates
to the operational process conditions and to the molecular prop-
erties to highlight trends in the transport of trace pollutants,
including an attempt to evaluate the consequences on contami-
nation of secondary products.

2. Material and methods
2.1. Sampling

2.1.1. Sample points

Samples points of the AIX include: inlet and outlet of the con-
tactor, referred to in Fig. 1 as streams (1) and (2), as well as in the
brine solution (4) obtained from the periodic regeneration cycle of
AIX resin occurring immediately after a sufficient contact time.
More details on the use of NaCl solution leading to brine production
is available in (Galjaard and Koreman, 2015). In the ED pilots
operated in batch mode, sample points include influent brine (4),
effluent brines numbered (6) and (7) for ED1 and ED 2 respectively,
and effluent concentrates (5) and (8).

2.1.2. Trace pollutants

For consistency, trace pollutants were sampled within a day. The
study uses three AIX units available at Andijk with slight differences
in kinetics due to their different scales (two generations of pilots
and one full scale). The operational parameters for each AIX units
are given below in detail. The brine from pilot 2 (Table 2) was
manually collected to be further treated with ED in two consecutive
batches.

2.1.3. Process performance

Routine samples were taken weekly in pilot 2 and the obtained
analytical results from these samples were used to express the
continuous AIX performances over a period of six months. For ED
running in either in batch mode or feed and bleed mode, the
sampling time affected the results. Therefore, a representative
batch was chosen to determine the performance. ED routinely runs
using brine from full scale.

2.2. lon exchange pilots

All three pilot and full-scale ion exchange units in this study are
SIX® processes developed by PWNT (Koreman and Galjaard, 2016)
operating continuously on the parameters in Table 1. During SIX®
operation, the resin is dosed in the raw water, kept in suspension
during a fixed residence time, separated from effluent water
through lamellas and fully regenerated before being used in the
next cycle.

2.3. Electrodialysis pilot

The ED pilot includes two stacks operated in subsequent batch
mode at a constant voltage of 45V for 5h. In both batches, the
concentrate initially consists of 60 L of water produced by reverse
osmosis in which the transferred salts will accumulate overtime.
The diluate of ED 1 consists of 150 L of brine produced on AIX pilot
2, which will transfer to ED 2 to be further treated. Table 2 sum-
marizes the operational parameters applied.

2.4. Membrane characterization

Membranes were characterized to determine differences in
structural properties at the time of the study. Parameters evalu-
ated include membrane thickness, perm-selectivity, electrical
resistance, water content and contact angle determined with the
captive bubble method. Results are presented in Table 3 and
more information on the method is available from supporting
information I.

The difference between the two types of anion exchange
membranes is an additional layer on the surface of the monovalent
selective membranes. This can be observed from a difference in the
determined membranes thicknesses between the two types of ED
membranes (Table 3). (Ge et al., 2014; Saracco and Zanetti, 1994)
suggest that this additional layer is a tighter cross linked polymer
which is deposited onto the PVC internal structure to physically
block the passage of larger molecules. Characterization data show
that the monovalent selective and standard membranes have a
similar water content despite differences in membrane thickness;
in addition, a higher contact angle for the monovalent selective
membrane indicates a lower hydrophilicity. Both characteristics
could in fact result from a lower density of active groups caused by
an additional layer of polymers (Kumar et al., 2009). In any case, an
improved mono-selectivity of the Neosepta membrane was
confirmed by the difference in electrical resistance in a NaCl solu-
tion (10 Q cm?) or in a MgSO0y4 solution (87 Q cm?). The standard PC
Cell membranes display a constant electrical resistance around
2Q cm? in both solutions.

Table 1
Operational parameters on three scales SIX® ion exchangers used in this study.
Pilot 1 Pilot 2 Full scale
influent water flow 30m>/h 60 m>/h 2000 m3/h

Resin type

sites
Resin concentration 12 mg/L
Residences time 30 min

Operation
Suspension of the resin
Regeneration

Lewatit S 5128, acrylic gel structure with Quaternary ammonium type 1 (strong bases) exchange

Suspended resin, single pass, the resin is regenerated after each residence time
mechanical rotor
NaCl in solution, at purity of 99%, the rest of the composition includes calcium (0.2%), sulfate (0.7%),

air injection air injection

and magnesium (0.1%)

NaCl concentration for regeneration 55g/L

110 mS/cm

45g/L
90 mS/cm

35g/L
70 mS/cm
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Table 2
Electrodialysis operational parameters.

Stack 1

Stack 2

Commercial name
Membranes used
Active membrane area 560 cm?/membrane
Number of cell pairs 50

EUR6B-50 (Eurodia)

Role Monovalent salts separation
150L (brine IEX pilot 2)
60 L of reverse osmosis permeate

Initial diluate volume
Initial concentrate volume

Neosepta CMXsb and ACS (monovalent selective)

1000H-25 (PC Cell)

PC Cell SA and SK

1000 cm?/membrane

25

Multivalent salts separation
135L (diluate ED1)

Table 3
Membranes structural characterization parameters.
Neosepta (ED1) PC Cell (ED2)
ACS (mono selective) CMXsb (standard) SA (standard) SK (standard)
Thickness (um) 126 189 93 110
Perm-selectivity (%) 86+1 100+0 97 +1 90+0
Contact angle (°) 31+2 29+0 22+2 44 +8
Electrical resistance Na—Cl (Q.cm?) 100+ 04 24+0.0 1.9+0.3 3.7+0.0
Electrical resistance Mg— SO* (Q.cm?) 87.0+7.0 82+0.1 1.7+03 36+0.1
Water content (wt%) 26+1 34+1 33+1 26+3

2.5. Analytical method trace elements

2.5.1. Pre-treatment of samples

All samples were filtered using 0.20 um filtration to remove
larger particles. As dilution factor of 10, determined by validation
tests, was applied to brine samples to reduce matrix effects during
chemical analysis.

2.5.2. Organic micro pollutants

Ten organic micro-pollutants were selected on their probable
presence in the IJssel lake (dr. ir. Th. H. M. Noij and E. Emke, 1999;
Mons et al., 2000), a target liquid chromatography — tandem mass
spectrometry (LC-MS/MS) method was used. The LC system con-
sisted of an Accela Ultrahigh Pressure Liquid Chromatography -
UHPLC (Thermo Fisher Scientific, Bremen, Germany). The chro-
matographic separation was performed on a Hypersil Gold column
(2.1 x 100 mm, 1.9 um, Thermo Fisher Scientific), preceded by a
SecurityGuard Ultra C18 column (2.0 mm x 2.1 mm, Phenomenex,
Torrance, USA). Mass spectrometric detection was performed using
a tandem quadruple mass spectrometer TSQ Vantage (Thermo
Fisher Scientific) equipped with an electrospray ionization source
operated in positive and negative mode.

For the general detection of micro pollutants in surface water, a
suspect screening was performed using liquid chromatography —
quadruple time of flight mass spectrometry (LC-QToF). The LC
system consisted of a Nexera X2 LC-30AD binary gradient pump,
and a CTO-20AC column oven (Shimadzu Corporation, Kyoto,
Japan). The chromatographic analysis was performed on an Xbridge
C18 XP column (2.1 x 150 mm, 2.5 pm, Waters, Etten-Leur, the
Netherlands) preceded by a SecurityGuard Ultra C18 column
(2.0 mm x 2.1 mm, Phenomenex, Torrance, USA). Detection was
performed on a QToF mass spectrometer (TripleTOF 5600+, AB
SCIEX, Concord, Canada) operated in both positive and negative
electrospray ionization mode.

Additional information on the analytical protocol for LC-MS/MS
and LC-QToF methods is available in supporting information II. The
validation of the LC-QToF was performed with a recovery test
spiked with 0.5 pg/L of 56 frequently occurring micro pollutants
and showed a good recovery for surface water (ranging from 74.8%
to 124.1%) and satisfying recoveries for diluted brine (ranging from
44.5% to 129%). Validation of LC-MS/MS resulted in better

recoveries and quantification in both surface water (ranging from
89.1% to 108.8%) and diluted brine (ranging from 76.3% to 140.8%).
In the results section a star* marks the values obtained with LC-MS/
MS.

2.5.3. Inorganic micro pollutants

For trace metal compounds analysis an ICP-MS screening
method using a Xseries 2 ICP-MS (Thermo Fisher Scientific) was
employed for the detection of 65 trace metal compounds in a single
run. The trace metal compounds were quantified using an external
calibration line consisting of four points. Because of its high salinity,
dilution of the brine with a factor of ten and hundred were
compared during a recovery test with 1 ug/L spiked compound and
were found to be similar (range 43.6%—148.1%).

2.6. Mass balance formulas

Two parameters derived from simple mass balance equations
were used to express the trace pollutants transport in the ion
exchanger. First, the removal (in %) through adsorption of a com-
pound, calculated by equation (1) as the difference in concentra-
tions entering and exiting the AIX contactor, relatively to the
concentration entering. Secondly, the percentage of compounds in
the brine presumably transported from raw water through
adsorption desorption is calculated as a ratio between the two in
equation (2) under the assumption that the fresh NaCl solution for
regeneration is not contaminated with trace pollutants.

G F; — G

removal (%) from the raw water = F .100% (1)

11

transport (%) to the brine = Cafa 100% (2)
GF

In both equations, C refers to the concentration and F to flows of
either ion exchange influent, referred to as stream 1 in Fig. 1, the
effluent (stream 2), or the brine (stream 4). Theoretically, the dif-
ference between equations (1) and (2) represents the percentage of
compounds permanently adsorbed on the resin beads.

Similar mass balance equations were adapted for the trace
pollutants transport in the ED processes. For each of the two ED
steps, equations (3) and (4) express the removal (in %) by ion



38 E. Vaudevire et al. / Water Research 154 (2019) 34—44

exchange transfer as a difference between the concentrations in the
brine at the beginning and the end of treatment relatively to the
initial concentrations in the brine. The percentage recovered in the
concentrate stream at the end of either the first-stage or the
second-stage ED are expressed with equations (5) and (6) respec-
tively. The initial concentration of trace pollutant in the concentrate
prior to ED is estimated as null.

GaVa —GeVs 100y

removal (%) in the first — stage ED = (3)
4V4
removal(%) across the two — stage ED = CaVa =G V7 .100%
C4V4
(4)
first — stage recovery (%) = %.100% (5)
C4V4
o _ C8V8 10
second — stage recovery (%) = ——.100% (6)
A

With C and V being respectively the concentrations and the
volumes of, in reference to Fig. 1, stream 4 represents the initial
brine, stream 5, the concentrate after monovalent selective stack,
stream 8, the concentrate after standard stack, stream 6, the
monovalent selective diluate and stream 7, the final diluate con-
taining the NOM in solution.

3. Results
3.1. Ion exchange performance in drinking water treatment

The selected resin, Lewatit S5128, is designed for the adsorption
and desorption of negatively charged dissolved organic matter
(Lewatit-Lenntech, 2015). However, the charged quaternary
ammonium functional groups results in the adsorption onto the
resin material of both NOM and anions present in the raw water.
Removal (eq (1)) and transport (eq (2)) percentages calculated over
pilot 2 are displayed in Table 4. The data show a preferential order
of removal of anions from the IJssel lake as: SO?{ > DOC> NO3 >
HPO4%~ > HCO5; ~. DOC, dissolved organic carbon, represents the
NOM.

Half of the DOC is removed during the treatment which can be
explained by the selectivity of the resin towards charged com-
pounds with a low molecular weight referred to as the humic
fraction of NOM. This selectivity is indicated by LC-OCD used for
NOM fractionation (Metcalfe et al., 2015). For this study, the focus is
the fate of trace contaminants, NOM fractionation was not used.
The percentages of compounds removed from the raw water (eq
(1)) almost match the percentage transported in the brine (eq (2)),
as an indication of a near complete regeneration. The production of
brine constitutes in volume about 0.5% of the water treated.

3.2. Organic micro pollutants transport in anion exchange pilot

Twenty-three organic micro pollutants were detected with LC
MS/MS and the 81 screened with QToF in the [Jssel lake. Only 27
species were quantified in the AIX influent, effluent and/or brine
and the removal (eq (1)) and transport (eq (2)) were calculated; the
species detected under quantifiable limits are listed in supporting
information IIl. Transport determined in pilot 2 are presented in
Fig. 2 with similar trends for pilot 1 and full scale in supporting
information IV. All species caring negative charges, except for
gabapentine, were transported substantially (5.5—30%) to the brine
stream. Whereas only a limited amount (0—7.5%) of the neutral
species and none of the positively charged metroprolol and tetra-
propylammonium were transported. Other parameters related to
the organic micro-pollutants in the IJssel lake, in the ranges sum-
med up below, could not be correlated with their removal:

- Molecular weight with values between 119 and 390 g/mol

- Initial concentration in [Jssel lake, between 0.1 pg/Land 0.61 pg/
L

- The octanol/water coefficient (Log P), between —1.7 (most hy-
drophilic) and 4.26 (most hydrophobic).

- Van der Waals radius, between 99 and 368 A

- pKa, between 1.16 and 15.96 as a measure of the acidity

This observation tends to indicate that, in practice, the transport
of organic micro-pollutants in AIX is dominantly driven by elec-
trostatic interactions with the quaternary ammonium group of the
regenerated AIX resin material. To a lesser degree, physical in-
teractions occur as well, as was indicated by the transport of neutral
compound metazachlor ESA.

3.3. Trace metals compounds removal in anion exchange pilot

Metal cations in solution are not expected to adsorb on the resin
because of charge repulsion effects, unless a ligand is present or
negatively charged metal oxides are formed. In [Jssel lake water, the
HS, which contain a high density of carboxylic and other binding
groups in their structure, can be considered as ligands. They are
even often referred to as chelating agents; which involves the
ability to form multiple bonds with a single metallic element,
increasing the strength of the complex. Many studies (Davis, 1984;
Mantoura et al., 1978a, 1978b; Olivier Pourret, Mélanie Davranche,
Gérard Gruau, 2007; Ram and Raman, 1984) have theorized the
complexation of trace metals compounds with humic substances,
and the effect of surrounding conditions (pH, temperature, con-
centrations) and competition mechanisms.

To verify the attachment of trace metal compounds on Lewatit
S5128 in the presence of HS, removal (eq (1)) and transport (eq (2))
were calculated; transport across pilot 2 are presented in Fig. 3.
Results with pilot 1 and full scale showed similar trends and are
displayed in supporting information V. The results are organized by

Table 4
Operational performance of the SIX® pilot 2.
Cl Na HCO3 S04 NO3 HPO4? DOC
AIX influent (mg/L) 130 100 150 54+3 6+1 0.09 6+03
+1 +3 +3 +0.01
AIX effluent (mg/L) 200 100 105 8 4 0.06 +0 3+04
+4 +3 +6 +0.5 +4
AIX brine (mg/L) 12.630 14.650 7070 7500 260 32 540
+ 1400 + 890 + 930 + 1100 + 60 +2 + 100
% removal (eq. (1)) - — 30% 85% 35% 33% 50%
% transport (eq. (2)) - — 31% 91% 28% 23% 59%
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Fig. 2. Transport (%) of organic micro-pollutants from IJssel lake to AIX brine on pilot 2 (equation (2)).
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Fig. 3. Transport (%) of metals through direct or indirect attachment on AIX resin in pilot 2 (equation (2)).

groups of elements according to the periodic table to highlight
possible group behaviors. The analysis revealed over 36 elements;
among them sodium, magnesium, potassium and calcium entering
the process ranging from 5 to 94 mg/L, while others range from 0.1
to 340 pg/L. Sodium is here deliberately excluded from the calcu-
lations since it is added in large amounts during regeneration.

The transition metals, as a group, and arsenic, selenium and
uranium display the highest transport to the brine. To confirm they
originate from IJssel lake rather than from the salt solution, their
removal (eq (1)) and transport (eq (2)) are compared in supporting
information V. Only Tungsten and Zirconium could not be traced
back because there were not quantifiable in raw water. Despite
higher initial concentrations, the transport of alkali metals or
alkaline earth metals is low.

All transported ions have in common a favorable electronic
configuration towards complex or oxyanions formation. Aqueous
forms of the transition metals are too numerous to be considered all;
vanadium, molybdenum, tungsten, copper and cobalt, displaying the
highest transport, are discussed below as examples. The first three
elements share similar properties: (1) as a result of redox reaction,
they are mostly found in surface waters as in oxyanions H,VOg,
MoO3 -, W03, which adsorption on the resin is possible. (2) There is
also evidence of humic material partially reducing Mo, V and W to
form weak organometallic complexes (Crans and Tracey, 1998;
Lazaridis et al., 2003; Smedley and Kinniburgh, 2017; World Health
Organisation, 2000). But for copper and cobalt which occur in sur-
face water in their free Cu?** and Co?* forms, transport to the brine
can only take place through complexation with organic molecules.
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3.4. Performances of the two-stage electrodialysis

The performance of ED during routine operation on full scale
brine is displayed in Table 5. Desalination data is provided in
supporting information VI.

A high removal of chloride and nitrate, a moderate removal of
bicarbonate and a low removal sulphate and DOC was observed
during the first stage ED separation. The second stage of ED reduced
the total inorganic content of the brine even further with a rela-
tively limited loss of organics.

3.5. Micro pollutants removal in electrodialysis

All micro-pollutants detected in the brine in pilot 2 were
retrieved in the ED mass balance, Fig. 4 displays their distribution
between the different effluents. The recovery (equations (5) and
(6)) illustrate the fractions transported to the concentrates after
the monovalent (a) and standard (b) stacks respectively. Equation
(4) is used to assess the compounds remaining in the brine at the
end of the two-stage treatment (c). On the x axis, the micro pol-
lutants are ordered by increasing Van der Waals volume. A clear cut
off in removal is observed after the passage of 2,4,dinitrophenol at
141.85 A over the monovalent ED stack. Compounds with a bigger
radius were not found to be significantly transported. Such a cut off
was not observed with the standard ED stack, and previously
strictly retained micro-pollutants on the monovalent ED stack such
as cyclamate (154 A), MCPA (172 A), benzaton (202 A) or sulame-
thoxazole (211 A) could be transferred to the concentrate of the
standard ED stack. The difference in removal over the two stacks
could be attributed to the additional polymer layer on the surface of
monovalent selective anion exchange membranes (Table 3) of
which separation was based on size exclusion. At the end of the two
stage ED treatment, only the largest compounds remain in the
brine. The zwitterion gabapentine is also noticeably retained
throughout the two stages ED whilst being relatively small; this
could be explained by the double positive and negative charges
which may lead to ineffective transport under the electrical current.

As illustrated in supporting documents VII, other molecular
properties of the organic micro-pollutants, e.g. molecular weight,
concentration in brine, octanol/water coefficient (log P), pKa and
charge, did not affect the removal considerably.

3.6. Trace metals removal in electrodialysis

The hypothesis of metal cations transport through AIX process
involved organometallic complexes and oxyanions that would have
formed in surface water. Once in the brine, changes in salinity and
pH can affect the stability of the complexes (Lores’ and Pennock ’,
1998; Rehemanjiang Wufuera et al., 2014) and possible modifica-
tion of the bonding mechanisms could be observed during ED
treatment. The 36 elements screened in the brine were retrieved in
the ED pilot. The results in Fig. 5 display the distribution of metal
elements between the three effluents; i.e.: the removal over the
monovalent selective ED stack (a), the standard ED stack (b) and the
retention in the brine after the two stacks (c). Equations (4)—(6) are

Table 5

Operational performance of the two stages-ED process.
Compounds NO3 Cl Ca Na HCO3 SO4 DOC
AIX brine (mg/L) 113 9050 25 8530 2660 3350 700
ED1 diluate (6) (mg/L) 4 1570 5 3460 2170 3500 695
removal % (eq (3)) 97% 85% 82% 65% 29% 9% 14%
ED2 diluate (7) (mg/L) <0.5 20 1 810 26 650 470
removal % (eq (4)) 100% 100% 98% 91% 99% 82% 32%
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Fig. 4. Recovery (%) of mico-pollutants over the first-stage ED (a), and second-stage ED
(b) and retention (%) across the two stages ED (c). Stream numbers are in reference to
Fig. 1.

respectively used for the calculations. Fig. 5 shows that alkali
metals and alkaline earth metals transfer relatively easily under the
electrical current in the first stage ED (a) and the second stage (b)
with the noticeable exception of calcium. Whereas the transition
metals and other elements at the right side of the periodic element
table are mostly retained by both ED stacks, with the noticeable
exceptions of (1) rhenium, palladium and ruthenium in ED stage 1,
and (2) basic and semi metals groups, and transition metals tung-
sten, molybdenum and vanadium in ED stage 2. The ease of
transport of alkali metals and alkaline earth metals confirms their
presence in an ionic form in the brine. The combined removal of
calcium over the two stages did not exceed 31%, but its retention at
the end of the treatment (c) is lower than 2%, which could suggest
some scaling effects at high pH values (Onorato et al., 2017). Both
types of cation exchange membranes (Table 3) used in the pilot are
permeable to multivalent ions, and should not restrict the transport
of free cations. Metal oxides formed in surface water would
separate in ED stage 1 or 2 according to their valence as observed in
the case of previously discussed for vanadium, tungsten and
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Fig. 5. : Recovery (%) of metals over the first-stage ED (a), and second-stage ED (b) and retention (%) across the two stages ED (c). Stream numbers are in reference to Fig. 1.

molybdenum. Therefore, the low removal of most transition metals,
semi metals, non metals and lanthanide suggests they formed
organometallic complexes which remained stable in brine. In
addition, the Irving—Williams series implies the stability of
organometallic complexes increases as they involve trace metals
across the first row of the periodic table from titanium to zinc with
the exception of vanadium (Mantoura et al., 1978b). Results show
the removal rates of compounds decrease accordingly. Lanthanide
which was not found transferring to the concentrate side however
was reduced in the brine. The case of uranium and selenium
deposition on the membrane due to the presence of calcium and
carbonate is discussed in (Onorato et al., 2017).

4. Discussion

In addition to the assessment of the transport of trace pollutants
through AIX and ED processes, sampling introduced the risk of
contamination of the created secondary products.

The NaCl solution collected in concentrate 1 (5) can be rein-
troduced in the AIX through the next regeneration cycle. The excess
of chloride in the brine after AIX is estimated to be around 30% of
the total demand. If fully recovered through ED, it would be mixed
with 70% of new solution. The main risk associated with this
practice involves accumulation of anions other than chloride in
time. The data provided in this article indicate that the initial salt
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purity of 99% (from provider) mixed with a recovered salt purity of
82% (from sampling) would decrease to 94% over one cycle.
Contamination would mainly be caused by bicarbonate (2.5%) and
different cations (calcium, magnesium, potassium). Only the pres-
ence of anions potentially reduces the regeneration efficiency of the
resin; and a buffering effect of bicarbonate is expected to stabilize
the contamination effect in time, which should be determined
experimentally. A projected overview of anions contaminating
chloride in the brine, after ED, and in the calculated composition of
the regeneration solution as a mix of recovered and fresh NaCl is
presented in Fig. 6. In this scenario, the combined contamination,
normalized per mg of chloride, would reduce from 0.79 mg of an-
ions and trace pollutants per mg of chloride to 0.22 mg/mg Cl after
ED, and to 0.07 mg/mg Cl once blended with fresh salt.

The purification of NOM after the two ED steps before use as
humic and fulvic supplement in agricultural applications is
assessed in Fig. 7. The contamination with inorganic and trace
pollutants is normalized per mg DOC and displayed in the brine (4),
after ED 1 (6) and in the recovered NOM solution (7) after ED 2. It
shows demineralization takes place with a concentration of com-
bined inorganic ions falling from 36.2 mg/mg DOC to 5.3 mg/mg
DOC during treatment. However, residual Na, HCO3; and SO4 will
hamper the range of applications of NOM where there is no limi-
tation on salts; animal feed supplement could be such example.

40.0
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per DOC (mg/mg DOC)

a-brine (4)

For direct application either on soil or for animal consumption,
residual levels of trace pollutants in the NOM are relevant. Regu-
lations are specific to application and location, so only general
toxicity risks related to trace pollutants are considered. Among the
micro-pollutants of concern:

- Dinitro-ortho-cresol (DNOC), a pesticide now banned from use,
is fully eliminated during treatment (information subjected to
the high inaccuracy of the analytical methods for this particular
compound).

Sulfamethoxazole, a potentially hazardous antibiotic, in the
NOM solution amounts 0.04 pg/L. With no existing standard for
this compound, this level is considered acceptable.

Diclofenac, an anti-inflammatory recently put on a watch list for
priority substance by the European Union, remains in the NOM
solution at a concentration of 0.01 ug/L. This is below the stan-
dards currently set on 0.1 pg/L in the European water Framework
for surface waters (“STOWA, 2013-23 Human pharmaceuticals in
the water cycle,” n.d.) therefore not considered threatening to
the environment.

Among the heavy transition metals, copper, nickel, arsenic, co-
balt and chromium are regulated in large numbers of application
i.e.: in the use as fertilizer (Kane et al., 2003), or in the standards for
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Fig. 7. Contamination of NOM in brine (4) diluate after ED 1 (6) and in the recovered NOM solution (7) after two steps ED. The stream numbers are in reference to Fig. 1.
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surface water (WFD, 2000). Residual concentrations in the recov-
ered NOM exceed the standards mentioned in both documents. In
fact, this assessment implies that the removal of heavy metals was
incomplete because of complex formation, which forms a serious
risk for different applications. One possible easy solution could be
for example acid treatment to de-complex the HS and the heavy
metals. If unsuccessful, alternative treatment methods should be
investigated for the purification of humic substances as a replace-
ment to the second step of electrodialysis.

5. Conclusions

The sampling campaign confirmed the retention of organic and
inorganic trace pollutants from raw water during AIX treatment,
and indicated a probable dominance of electrostatic interaction
during organic micro pollutants transport, and formation of oxy-
anions and complexes with the organics during metals transport.
During the treatment of the AIX brine in a two-stage ED (mono-
valent selective followed by standard stacks), trace pollutants were
seemingly separated according to the following:

- Size separation of organic micro-pollutants with a clear cut off
value related to Van der Waals volume was observed for the
monovalent selective anion exchange membranes, this behavior
did not appear with standard ion exchange membranes, due to
its looser polymeric structure

- Passage of metals was related to the periodic table group
properties. Alkali and alkali earth metals largely passed the
membranes on both ED stacks, likely in their cationic form.
Other metals, especially transition metals, were mostly retained
presumably due to complex formation with NOM.

As a result, NaCl was found to be of sufficient quality for reuse in
the process with however a specific attention to long term accu-
mulation of bicarbonate. NOM contained heavy metals which forms
arisk for potential reuse applications. Further research should focus
on improving the NOM quality using for example nonionic resin
extraction, as an alternative to the second ED stack, to remove
greater quantities of heavy metals and improve desalination of
NOM which would open the possibilities for industrial applications
(Peuravuori, 2000).
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