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Abstract: Uncertainty-aware design and management of urban water systems lies on the generation
of synthetic series that should precisely reproduce the distributional and dependence properties of
residential water demand process (i.e., significant deviation from Gaussianity, intermittent behaviour,
high spatial and temporal variability and a variety of dependence structures) at various temporal
and spatial scales of operational interest. This is of high importance since these properties govern
the dynamics of the overall system, while prominent simulation methods, such as pulse-based
schemes, address partially this issue by preserving part of the marginal behaviour of the process
(e.g., low-order statistics) or neglecting the significant aspect of temporal dependence. In this work,
we present a single stochastic modelling strategy, applicable at any fine time scale to explicitly
preserve both the distributional and dependence properties of the process. The strategy builds
upon the Nataf’s joint distribution model and particularly on the quantile mapping of an auxiliary
Gaussian process, generated by a suitable linear stochastic model, to establish processes with the
target marginal distribution and correlation structure. The three real-world case studies examined,
reveal the efficiency (suitability) of the simulation strategy in terms of reproducing the variety of
marginal and dependence properties encountered in water demand records from 1-min up to 1-h.

Keywords: residential water demand; stochastic simulation; non-Gaussian distributions; intermittency;
correlation structure; linear stochastic models; Nataf’s joint distribution model; copula; urban
water management

1. Introduction

In the planning and management of urban water systems, the temporal and spatial variability
of residential water demand is one of the most influential sources of uncertainty [1,2]. Conventional
modelling approaches often neglect this aspect, by involving on the one hand, identical multiplier
patterns to provide a coarse representation of the diurnal variation of water demand (typically from
hour-to-hour) and on the other hand, simplified allocation techniques to express the variation of demand
across different points (e.g., nodes) of the network. Despite its practical simplicity, this approach fails to
capture adequately the high spatio-temporal variability and uncertainty of water demand (e.g., [3–7]),
which becomes more and more intense as the scales of analysis become lower [8]. Furthermore,
such a modelling concept does not allow the design, evaluation and management of water distribution
systems (WDS) within an uncertainty-aware framework since it implies the use of deterministic water
demand patterns as inputs in, typically, deterministic simulation models. A way to address some of
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these shortcomings, is the study, analysis and modelling of the uncertain nature of water demand
in a probabilistic framework by treating the latter as a stochastic process. In essence, this allows the
development of stochastic water demand forecasting tools (e.g., see [9–12] and the references herein)
and simulation methodologies. In this work, we focus on simulation that allows the generation of an
arbitrarily large number of synthetic, yet statistical consistent, realizations of water demand events,
which can then serve as non-deterministic inputs to a WDS, allowing for the probabilistic assessment
of its performance under different input scenarios.

During the last decades, the rising deployment of smart metering systems provided new modelling
perspectives by delivering large amounts of detailed water demand measurements (e.g., [13–15]).
Taking advantage of this dataflow, the research community focused on the modelling of residential
water demand at very fine temporal (down to 1 s) and spatial (i.e., household or even water appliance)
scales. Then, when necessary, synthetic records at higher levels can be derived via a bottom-up
approach that involves the aggregation of fine-resolution data [2].

As literature reveals, the notion of the rectangular pulse has prevailed in the stochastic modelling
of residential water demand. This may be associated with an attempt to provide a physical realism in
the representation of the real process. In effect, this mechanism, studied at a micro-scale level, can be
regarded as a sequence of individual or clustered pulses (events) with constant duration and intensity.
Stochastic simulation techniques, such as the Poisson rectangular pulse (PRP) processes [16–23]
and Poisson-cluster processes, i.e., the Neyman–Scott [24–26] and Bartlett–Lewis [27] mechanisms,
have been employed to generate synthetic water demand events, which occur at continuous time, at the
level of a single-household or group of households. Moving from continuous to discrete-time processes,
the aggregated demand series can be obtained by summing up all pulses which are active in each
discrete time interval. Furthermore, simulation schemes, both stochastic and deterministic, that produce
demand signals starting from the level of individual micro-components (i.e., water appliances and
uses) have also been developed [28–31].

The above models, and especially PRP and appliance-based schemes, focus mainly on the
generation of pulses, whose characteristics (frequency, intensity, duration) are statistically consistent
with those of the observed demand events. This is also implied by the adopted procedures for
the estimation of their parameters. More specifically, the structure of PRP, implying a one-to-one
correspondence between a pulse and an event, allows the fitting of the underlying model’s distributions
of pulse characteristics directly upon the observed events, if instantaneous demand measurements
(e.g., 1-sec time resolution) are available [16–18,20–22]. The schemes based on the simulation of
micro-components provide a detailed and elegant description of the real water demand mechanism,
but their proper parameterisation is a difficult task since it requires deep knowledge of the consumption
habits of the users and the characteristics of water usage [23,32,33].

However, typical WDS modelling applications require demand records across a wide range
of higher temporal and spatial levels where the characteristics of individual events are no longer
identifiable (e.g., [32]). Thus, from a practical point-of-view, in real-world applications, apart from
those that explicitly focus on the influence of individual uses at a micro-scale level (see e.g., [28,34,35]),
the key task is not the modelling of individual demand events per se, but the adequate reproduction of
the statistical and stochastic properties of the discrete-time demand process at different temporal (e.g.,
1 min or 15 min scale etc.) and spatial (e.g., household, group of various number of users, nodes etc.)
levels. The above mentioned models, though fitted on the basis of individual pulse characteristics,
essentially embrace this necessity since their evaluation is also conducted upon statistical parameters of
the aggregated demand series which are typically involved in the WDS applications (i.e., main summary
statistics or cumulative distribution function of demand, water volume per day, maximum flow at
different time scales and probability of no demand).

These models can be regarded as implicit methods in terms of reproducing the marginal
and dependence characteristics (i.e., the stochastic structure) of the discrete-time water demand
process, implying that this reproduction can be achieved via an adequate representation of the
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characteristics of individual events. In fact, empirical evidence suggests that they provide a satisfactory,
though not explicit, approximation of some statistical parameters of the observed aggregated series.
The performance and effectiveness of these models is closely associated with the availability of
super-fine observed data that allow the decomposition of demand measurements into single equivalent
pulses with identifiable characteristics (see e.g., [16,36]). However, such data can be typically found only
at a small number of pilot households, while the commercially available energy-efficient, cost-effective
and with long lifetime smart metering devices provide water demand records with higher time step
(i.e., 1 min or higher).

Another parameterisation approach, with direct reference to the discrete-time process, consists in
obtaining the parameters of PRP and Poisson-cluster models so as to preserve specific properties of the
aggregated demand series. Since this approach does not require data at the level of individual pulses,
it can be also applied when data of larger time step are available. This method has been used to fit
the original PRP model [19], and is the standard parameterisation procedure for the Poisson-cluster
processes [24,27]. The structure of the latter (i.e., each event is formulated by a cluster of pulses) does
not allow to obtain the parameters directly from the characteristics of observed events. This approach
typically involves the theoretical equations of the models which express the main statistical properties
(i.e., first- and second-order moments and the probability of no demand) of the discrete-time aggregated
process as a function of model parameters, while numerical schemes in cases where the analytical
expressions are not available (e.g., PRP model with correlated pulse intensity and duration) have also
been studied [22]. Using this concept, pulse-based models are able to generate synthetic water demand
data that explicitly reproduce specific properties of the observed aggregated series. However, these are
limited to low-order summary statistics (i.e., mean, variance and probability of no demand) regarding
the marginal properties of the process and lag-1 autocorrelation coefficient regarding its dependence
structure. In this regard, the problem of stochastic simulation of residential water demand is partially
addressed since neither the complete marginal distribution nor the whole stochastic structure of
the process are explicitly preserved. This also stands for the models which are fitted upon pulse
characteristics where the aggregated series are derived implicitly.

Further to the models based on the notion of pulse, a limited number of alternative stochastic
procedures for the simulation of water demand process can be found in the literature. More specifically,
Gargano et al. [32] proposed a method for the probabilistic representation of the daily trend of residential
water demand for different number of users, using a mixed-type distribution to describe the whole
process without, however, accounting for the underlying temporal dependences. Alvisi et al. [37,38],
using a bottom-up approach, employed random polynomial processes along with reordering techniques
to enable the generation of synthetic water demand data which are statistically consistent (in terms
of mean, variance and spatio-temporal correlations) with observed the time series at lower and
higher spatial and temporal scales. Following the opposite procedure (i.e., top-down allocation),
stochastic disaggregation methods, typically applied in the field of hydrology, have also been used to
allocate, probabilistically, total amounts of water of an area to its enclosed nodes [6]. Furthermore,
and though not proposing stochastic simulation models, it is worth to mention the work of Kossieris
and Makropoulos [39] who study the statistical and distributional properties of residential water
demand at various scales, as well as the study of Gargano et al. [40] on the evaluation of probabilistic
models to describe the peak residential water demand. Lastly, Magini et al. [8,41] and Vertommen
et al. [42] studied the scaling properties of water demand at different spatial and temporal levels,
while recently Magini et al. [43] employed those properties to generate large number of scenarios of
spatially correlated demand series at the node of a network.

In WDS modelling, the adequate reproduction of these two aspects, i.e., the marginal distribution
and stochastic structure, of the discrete-time water demand process at different temporal and spatial
scales is of high importance. Regarding the first, the probabilistic behaviour of a process is fully
described by its marginal distribution. On the contrary, low-order statistics provide only a part of the
picture, without explicitly accounting for other important aspects of the marginal properties such as
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tail behaviour and hence the reproduction of extremes. This is crucial especially in the design of WDS
that requires a proper characterisation of peak flows at different temporal resolutions (e.g., [2,40,44]).
This is further highlighted in the work of Kossieris and Makropoulos [39] who demonstrate that the
use of some low-order moments (i.e., up to third moment) is not sufficient, since different distributions,
having the same moments, result in totally different behaviour in terms of maximum water demands.
Additionally, a complete description of the statistical behaviour (e.g., in terms of marginal distribution)
of residential water demand is also important in WDS quality modelling applications where different
flows, further to maximum values, are used in hydraulic models (e.g., see [3] and references herein).

The importance of appropriately reproducing the temporal and spatial dependencies, i.e., stochastic
structure, encountered in water demand process has also been highlighted by many researchers [3–7,
24,37,38,45,46]. More specifically, autocorrelation structure expresses the dynamics of water demand
process in time, affecting many parameters in the modelling of WDS, e.g., peak flows, stagnation
time, velocities in the pipes, restoration time after pipe breaks etc (e.g., see [37] and references herein).
On the other hand, cross-correlation expresses how water demands co-vary across different nodes
of the network, and it is also associated with many aspects of the system, e.g., system’s performance
on the basis of the main statistics of the pressure heads and cost, as well as water quality (e.g., [5,7]).
The influence of both auto- and cross-correlation structures have been also studied in the context of
bottom-up approaches (see [2]). In this case, the main objective is for the aggregated data to exhibit
the desired statistical properties at the temporal and spatial scales under study. As Alvisi et al. [24]
pointed out, in order to reproduce the variance of the observed aggregated series, the auto- and
cross-correlation structures of the lower-level data should be adequately captured.

In the present work we propose a stochastic modelling strategy for the simulation of residential
water demand at any fine time scale, i.e., from 1-min up to 1-h. The proposed strategy combines the
widely-used class of linear stochastic models (e.g., autoregressive models) with the concept of Nataf’s
joint distribution model [47] to enable the explicit reproduction of the marginal distribution and the
dependence structure of the process. Nataf-based schemes have been applied in the field of operational
research (e.g., [48–50]), while very recently this approach was transferred to the hydrological domain for
the stochastic simulation of physical processes [51–56]. Based on these developments, here, we transfer
this approach in the domain of residential water demand (a non-physical process) employing, for the
first time, linear stochastic models, rather than pulse-based schemes, to explicitly account for the
peculiarities of that process at different fine time scales (i.e., intermittency, skewed distributions,
periodicity and strong temporal dependence). Furthermore, in the framework of this approach, various
innovative modelling aspects are introduced and discussed, for the first time, in the field of water
demand simulation, such as, the use of theoretical autocorrelation functions instead of empirical
estimates as well as the use of mixed-type distributions with any arbitrary marginal distribution
to describe the continuous part of the process. Especially regarding the latter, we also extend the
above mentioned Nataf-based schemes by employing three-component mixed-type distributions to
capture adequately both the discrete-continuous character (i.e., intermittent nature) of residential water
demand as well as its tail behaviour.

A detailed description of the proposed modelling strategy can be found in Section 2 which is
further subdivided into eight subsections presenting the components of the method. Specifically,
Section 2.1 provides a literature review of the Nataf-based approach and a high-level description
of its rational both in terms of random vectors and stochastic processes, while Sections 2.2 and 2.3
present the theoretical background of the methodology. Section 2.4 provides insights on the probability
distributions that can be used to describe the marginal properties of residential water demand,
while Section 2.5 illustrates an example of the method. Moving from the field of random variables
to stochastic processes, Section 2.6 describes the auxiliary linear stochastic models. Next, the use of
theoretical autocorrelation functions is presented in Section 2.7. Lastly, Section 2.8 summarises the
overall approaches giving the steps of the generation procedure. The method was evaluated in terms
of reproducing the marginal distribution and stochastic structure of residential water demand at three
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different temporal levels, i.e., fine, medium and high (Section 3). Finally, Section 4 provides a synopsis
and discussion of the presented modelling approach.

2. Methodology and Key Components

Nataf-based schemes enable the explicit preservation of the marginal and stochastic properties of
a process or, in other words, its distribution functions and correlation structure. They are based upon
the simple, yet pivotal, idea of Nataf [47] according to which the joint distribution of random variables
with any target arbitrary marginal distributions can be obtained by mapping an auxiliary multivariate
standard Gaussian distribution via the inverse cumulative distribution functions (ICDF). Following
the same rational, by mapping an auxiliary (stationary or cyclostationary) Gaussian process with zero
mean and unit variance (e.g., simulated by a linear stationary or cyclostationary autoregressive model),
we can obtain a stochastic process with a target marginal distribution and correlation structure.

2.1. Modelling Rationale and Literature Review

In the core of the described methodology lies the problem of generating random variables
with arbitrary marginal distributions and specific correlation matrix. According to Nataf’s pivotal
work, correlated random vectors can be obtained on the basis of multivariate standard normal
variables. This general approach is known as the Nataf’s joint distribution model (NDM) or Nataf
transformation [57], while later the work of Cario et al. [49] established the term NORmal To Anything
(NORTA) to describe a generalized procedure that builds upon and extends the NDM rationale to
account also for random vectors comprised by continuous and discrete marginal distributions.

Conveniently, NDM can be regarded as a two-step procedure: first the multivariate normal
variables are mapped to uniform domain, and then the multivariate uniform variables are mapped
to the desire distributions using their inverse cumulative function. Since this procedure implies the
establishment of the variables’ joint distribution through the joint distribution of normal variables
passing also from uniform domain, it is closely associated with copula theory. This connection was
first noted by Cario et al. [49], as well as by Tsoukalas et al. [51], while an extensive discussion on the
relation of NDM with Gaussian copula was provided later by Lebrun et al. [58].

The main challenge in NDM is the identification of the so-called equivalent correlations of normal
variables that will result in the target correlations after applying the mapping procedure. The suitability
of NDM to describe a wide range of correlations was investigated by Liu et al. [57] who also developed
empirical formulas that relate the equivalent and target correlations for specific types of continuous
marginal distributions. Further to this classical work, various, yet often cumbersome, methods have
been proposed to establish a relationship between equivalent and target correlations (e.g., [59–62]).

Further to the modelling of random vectors, NDM has been also studied and applied in the
field of stochastic processes for the generation of synthetic time series which requires, among others,
to account for dependencies in time (i.e., stochastic structure). In this case, a Gaussian process is
enrolled to generate serially correlated Gaussian random variables which are mapped according to
NDM to provide the target process. In this concept, Cario et al. [48] combined an autoregressive
linear model with the idea of NDM to simulate auto-correlated univariate stationary processes with
arbitrary marginal distributions. This model, known as AutoRegressive To Anything (ARTA), was further
extended for the generation of multivariate time series by Biller et al. [50] who developed the Vector
AutoRegressive To Anything (VARTA) procedure.

Recently, NDM-based approaches have drawn the attention of hydrological community, since they
provide the tools for the reproduction of the peculiarities of hydrometeorological variables, i.e.,
cyclostationarity, highly skewed character, intermittency, short or long-range auto-dependence
structures as well as spatial dependency. In this concept, Tsoukalas et al. [51,54] developed the
Stochastic Periodic AutoRegressive To Anything (SPARTA) scheme that is a generalization of ARTA
and VARTA models for the simulation of univariate and multivariate cyclostationary (i.e., periodic)
processes with arbitrary marginal distributions. Furthermore, the Symmetric Moving Average To
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Anything (SMARTA) model [52] combines NDM with the symmetric moving average model [63]
to simulate non-Gaussian processes that exhibit any-range dependence structure. Papalexiou [53],
using autoregressive models, proposed a unified approach for the stochastic modelling of hydroclimatic
processes characterised by different correlation structures and marginal distributions, with focus on
the use of mixed-type distributions to model intermittency.

Further to the above models, as Tsoukalas et al. [51] pointed out, many other well-known simulation
schemes for hydrological variables (e.g., [64–66]), with the most characteristic being the so-called Wilks’
type weather generators [67], actually share a common rationale, and can be retrospectively viewed as
NDM-based approaches.

2.2. The bivariate Nataf Distribution Model

As discussed above, NDM approach was initially developed for the generation of correlated
random variables (RVs) with arbitrary marginal distributions, while next it was applied in the
simulation of stochastic processes after certain extensions and modifications. Although this work
focuses on the latter case, in order to keep things simple, we prefer to present NDM’s theoretical
background on the basis of a bivariate problem that studies the generation of two random variables
with predefined marginal distributions and correlation. Essentially, this problem can be regarded as
representative since it is also involved when we aim to apply NDM for the modelling of stochastic
processes using linear models, due to the fact that the latter are also based on the Pearson’s correlation
coefficient which is a two-point dependence measure.

Given that our target is to generate correlated RVs X1 and X2 with predefined target
marginal distributions FX1(x1)P(X1 ≤ x) and FX2(x2)P(X2 ≤ x), respectively, and target correlation
ρX1X2Corr[X1, X2] which is the Pearson’s correlation coefficient between the two variables, hereinafter
abbreviated as ρ1,2.

Let us initially to define two auxiliary correlated RVs Z1 and Z2 which both have the standard
normal marginal distribution and specific Pearson correlation coefficient ρ̃Z1Z2Corr[Z1, Z2], herein after
termed as equivalent correlation, for reasons revealed below, and abbreviated as ρ̃1,2. The joint
distribution of the two auxiliary variables is the bivariate normal with zero mean, unit variance and
correlation ρ̃1,2.

The RVs X1 and X2 can be obtained by mapping the auxiliary normal variables to the target
distributions, according to the following operations:

X1 = F−1
X1
(Φ(1)) , X2 = F−1

X2
(Φ(2)), (1)

where F−1
X1
(·) and F−1

X2
(·) denote the ICDF of the two target distributions and Φ(·) stands for the standard

Normal cumulative distribution function (CDF).
Recall that since U = Φ(·) is uniformly distributed in the interval (0, 1), the use of the ICDF of the

target distribution as a mapping function ensures that the final variables will have the desired marginal
properties. This concept, as mathematically expressed in Equation (1), is based upon the lemma
of probability integral transformation which allows the representation of any random variable as a
transformation of a uniform random variable, i.e., if U ∼ U[0,1], then the random variable X = F−1(U)

has the distribution FX (e.g., see, ( [68], p. 139); and ([69], p. 36).
Having said the above, one may assume that the preservation of the target correlation matrix

is also satisfied by setting ρ̃1,2 = ρ1,2. However, since ICDF typically imposes a nonlinear and
monotonic transformation, it is not possible to preserve the linear correlation as expressed by the
Pearson correlation coefficient and hence, ρ1,2 will typically differ to ρ̃1,2 after the mapping of Equation
(1). This transformation usually leads to underestimated correlation coefficients, while as the target
distribution deviates from the Normal case, the larger will be the underestimation. This implies that in
order to attain the desire target correlation coefficient ρ1,2, we need to technically assign an inflated
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value to ρ̃1,2. Therefore, the key challenge of the methodology is to determine the equivalent correlation
ρ̃1,2 that, after applying the mapping procedure, will result to the desired target correlation ρ1,2.

The establishment of the relationship between the target ρ1,2 and the equivalent correlation ρ̃1,2 is
based on the theoretical background of Nataf’s joint distribution model. Elaborating, given Equation
(1), the correlation of two RVs X1 and X2 can be written as:

ρ1,2Corr[X1, X2] = Corr
[
F−1

X1
(Φ(1)), F−1

X2
(Φ(2))

]
. (2)

According to the definition of Pearson correlation coefficient, the following equation also stands:

ρ1,2Corr[X1, X2] =
E[X1 X2] − E[X1] E[X2]√

Var[X1] Var[X2]
, (3)

where E[X1], E[X2] and Var[X1], Var[X2] are the mean and variance of X1 and X2, respectively. Since the
associated marginal distributions are already known (and have finite variance), these quantities can
be directly estimated and hence our attention is restricted to adjusting E[X1 X2]. Taking the first
cross-product moment of X1 and X2 and using Equation (1), we obtain:

E[X1 X2] = E
[
F−1

X1
(Φ(1)) F−1

X2
(Φ(2))

]
=

∫
∞

−∞

∫
∞

−∞
F−1

X1
(Φ(z1)) F−1

X2
(Φ(z2))ϕ2(z1, z2; ρ̃1,2)dz1dz2,

(4)

where ϕ2(1,1 ; ρ̃1,2) is the standard bivariate normal probability density function (PDF) with correlation
ρ̃1,2. By substituting Equation (4) to Equation (3) we obtain:

ρ1,2 =

∫
∞

−∞

∫
∞

−∞
F−1

X1
(Φ(z1)) F−1

X2
(Φ(z2))ϕ2(z1, z2; ρ̃1, 2)dz1dz2 − E[X1] E[X2]√

Var[X1] Var[X2]
. (5)

In Equation (5) we see that the target correlation ρ1,2 is a function of the equivalent correlation
ρ̃1,2, given the target marginal distributions FX1(x1) and FX2(x2). The latter equation can be compactly
expressed as:

ρ1,2 = T
(
ρ̃1,2

∣∣∣FX1(x1), FX2(x2)
)

(6)

where T (·) is the abbreviation of the function defined in Equation (5). By inverting Equation (6),
we express the problem as stated initially, i.e., what ρ̃1,2 will give the desired ρ1,2 after applying the
mapping procedure:

ρ̃1,2 = T −1
(
ρ1,2

∣∣∣FX1(x1), FX2(x2)
)

(7)

Equation (6) has analytical solutions only for a few cases where the variables have the same
target marginal distributions, such as the Uniform [60], Exponential [49] and Log-Normal [70]. In the
general case, numerical schemes are required to solve the integral in Equation (5) in order to establish a
relationship among ρ1,2 and ρ̃1,2 (see Section 2.3 for more details). In order to avoid tedious calculations
and achieve a more efficient numerical search, the fundamental properties of Equation (6) are typically
employed in the numerical procedures. The key properties, as provided by Liu and Der Kiureghian [57]
and Cario and Nelson [48], are:

Lemma 1. ρ1,2 is a strictly increasing function of ρ̃1,2.

Lemma 2. ρ̃1,2 = 0 for ρ1,2 = 0 and ρ̃1,2 ≥ (≤)0 if ρ1,2 ≥ (≤) 0.

Lemma 3.
∣∣∣ρ1,2|≤|ρ̃1,2

∣∣∣, where the equality stands when ρ1,2 = 0 or when both marginal distributions
are normal.
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Lemma 4. The feasible minimum and maximum values for ρ1,2, which can be obtained for a given set
of target distributions, are given for ρ̃1,2 = −1 and ρ̃1,2 = 1, respectively.

2.3. Establishing the Target-Equivalent Correlation Relationship

In the core of the NDM approach lies the problem of establishing a relationship between the target
and equivalent correlation, ρ1,2 and ρ̃1,2, respectively, given the target marginal distributions of the RVs.
In other words, to define T (·), or alternatively T −1(·), that will give the value of ρ̃1,2 so as to attain
the desired ρ1,2 after mapping Gaussian variables to the real domain (i.e., Equation (1)). To solve the
double integral appearing in Equation (5) and establishT (·) numerical schemes are typically employed,
since an analytic solution is feasible only for some few special cases. Among others, crude search
procedures [48], root-finding techniques [60,62] as well as quadrature methods and Monte–Carlo
procedures [59] have been used. These methods are often based on iterative methods while some of
them are specifically designed for certain types of distributions (e.g. continuous).

Recently, Tsoukalas et al. [51] and Papalexiou [53] proposed generic hybrid schemes that share
a common notion regarding the establishment of a suitable relationship between ρ1,2 and ρ̃1,2.
These schemes can be regarded as generic methodologies since on the one hand, they aim to capture
the whole form of T (·), and not to provide specific point estimates of ρ̃1,2, and on the other hand,
they are easily-extendable and applicable irrespective of the type of marginal distributions of studied
variables (i.e., continuous, discrete or mixed-type of distributions).

More specifically, in these methods, Equation (6) is solved for a specific set of ρ̃1,2 values, and the
corresponding target ρ1,2 values are obtained. To solve the double integral of Equation (5) typical
integration techniques [53] or Monte–Carlo [51] methods are employed. In this step, the methods also
take advantage of the properties of Equation (6), e.g., Lemma 2, to define the range of the ρ̃1,2 values
that should be studied (e.g., if the target correlation is positive then ρ̃1,2 values will range from 0 up
to 1). This procedure leads to a set of (ρ1,2, ρ̃1,2) anchor points upon which a suitable function (e.g.,
polynomial or parametric) is fitted to establish an approximation of the true T (·). This relationship
can be used as an “interpolator” that provides the equivalent ρ̃1,2 given the target ρ1,2. Papalexiou [53]
proposes various parametric functions to establish directly T −1(·), depending on the type of RVs.
On the other hand, Tsoukalas et al. [51] uses a polynomial function to approximate the T (·), while the
equivalent correlation ρ̃1,2, given a target correlation ρ1,2, is obtained by inverting the fitted polynomial.

2.4. Modelling the Marginal Behaviour of Water Demand

As described above, the NDM approach requires the definition of probability distributions to
describe the marginal properties of correlated random variables or stochastic processes (Section 2.6).
Essentially, the method aims to reproduce the target distributions which have assigned a priori to the
variables under study. Tsoukalas et al. [51,71] highlight the importance and benefits of this approach
against the classical stochastic modelling of hydrometeorological processes, which typically focuses on
the resemble of a series of specific statistical characteristics. As discussed in Section 1, this is also crucial
in residential water demand modelling given that WDS applications require a proper reproduction of
various characteristics (e.g., maximum demands) which cannot derive explicitly by the preservation of
some low-order statistics.

Another key advantage of the NDM approach is its flexibility regarding the selection and fitting
of the target distributions, given that the only prerequisite of the method regarding the latter is to have
finite variance. In this respect, several candidate distributions, fitted with alternative methods (e.g.,
classical moments, L-moments, maximum likelihood estimation, weighted moments), can be evaluated
and the most suitable for the variables under study can be identified on the basis of certain criteria.

Residential water demand series with a fine time step (i.e., at daily and mainly sub-daily scales)
are characterised by the presence of individual or grouped zero values, whose proportion becomes
more and more higher as the metering resolution is getting lower, implying more extensive time
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intervals with no demand. To describe probabilistically such an intermittent process, a mixed-type
(also known as discrete-continuous or zero-inflated) distribution can be employed, composed by a
probability mass concentrated at zero (i.e., discrete part) and a continuous part that describes the
nonzero positive demand magnitudes. This modelling approach, i.e., use of a unique distribution to
model the whole water demand process, differs from that of the pulse-based schemes (see Section 1)
which incorporate distributions for the individual components of demand events (i.e., occurrence,
duration and intensity) without any reference to the marginal properties of the whole process.

Mixed-type distributions have been widely applied to model hydrometeorological processes
(e.g., [51,53,72–75]) with intermittent behaviour (e.g., rainfall at fine time scales, discharge of intermittent,
flows, wind speed), while recently they employed for the probabilistic representation of residential
water demand [32,39].

More specifically, the cdf of a mixed-type distribution is given by:

FX(x) =

pND, x = 0

pND + (1− pND)GX(x), x > 0
(8)

where pND := P(X = 0) is the probability of no demand (probability zero), while GX and gX are
the cdf and pdf, respectively, of values greater than zero, i.e., GXFX|X〉0 = P(X ≤ x|X〉0). Therefore,
the establishment of FX(x) or fX(x) requires: (i) the estimation of pND which can be directly estimated
from the observed data as the ratio of the number of zero values over the total number of observations,
and (ii) the selection and fit of a continuous distribution GX that describes adequately the nonzero values.

As mentioned above, any probability distribution, defined on the real positive axis, could be a
candidate to model the continuous part of the process. At the same time, residential water demand
at fine time scales is characterised by high variability and skewness and hence, distributions that
will be able to capture these characteristics should be employed. In this respect, Kossieris and
Makropoulos [39] recently examined the suitability of 10 distributions to describe the nonzero 15-min
and hourly water demand, showing that Weibull, Gamma and Lognormal distributions have a good
performance in terms of reproducing the statistical behaviour of the under study records, while the
latter two perform also well in terms of maxima. Further to that, the probability distributions employed
by the pulse-based schemes to model pulse intensities could be potential candidates to represent GX,
i.e., the Exponential [8,24,26,27], Weibull [18], Normal [19] and Lognormal [36] distribution.

In several cases, the above classical distributions appear as suitable models to describe the entire
probabilistic behaviour of the under study continuous variable. On the other hand, as indicated by
many hydrological studies, the probabilistic structure of observed data (e.g., rainfall, flows) in several
cases is more complex (e.g., multimodal behaviour) and, hence, cannot be entirely captured with the
use of a single distribution. An alternative solution to this consists the use of nonparametric (e.g., [76])
or mixture distributions. The former, being a data-driven approach, has extrapolation limitations
and hence is inappropriate to model tail behaviour. Furthermore, mixture type distributions provide
enhanced flexibility, at a cost of few parameters, to account simultaneously for low, moderate and high
amounts of the under study variable. This approach has found fertile ground to adequately model
hydrological extremes which is of high importance in many engineering applications (e.g., [77–79]).
Furthermore, as discussed in Section 1, the whole range of water demand flows, further to the peak
values, are often involved in WDS applications, and thus the reproduction of the entire probabilistic
behaviour of residential water demand consists a conditio sine qua non.

To this end, in the present study we also employ a two-component mixture distribution for the
description of nonzero water demand values. This enables to capture the main body of observed data as
well as a more suitable representation of extreme behaviour, in cases where classical distribution models
are found inadequate. Particularly, the employed mixture model for nonzero water amounts reads [80]:
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GX(x) =

(1− uc)
G1(x|θ1)
G1(c|θ1)

, 0 < x ≤ c

(1− uc) + ucG2(x|θ2), x > c
(9)

where G1(x) denotes a cdf, with parameter vector θ1, which describes the body of the data up to
threshold c with corresponding quantile uc. Furthermore, G2(x) stands for the cdf of the Generalised
Pareto distribution (GPD), with vector parameter θ2, which consists the model of the upper tail.
The above mixture model has been implemented with the use of various continuous parametric
models, such as those mentioned above, to represent G1(x), e.g., Weibull, Gamma and Lognormal
distributions [81–83], while nonparametric methods have also been applied [80]. Furthermore,
the use of GPD consists a well-established modelling approach for extremes in many disciplines,
e.g., in hydrological domain this model has been used to probabilistically describe rainfall maxima.
This model has the flexibility to represent different types of upper tail behaviour depending on the
value of shape parameter γ (the cdf of GPD is given in Appendix A, Table A1). More specifically,
for γ > 0 the GPD has a heavy (sub-exponential) upper tail, for γ = 0, it convergences to the exponential
tail, while for γ < 0 the distribution has a finite upper bound at uc − β/γ, where β and uc denote the
scale and location (threshold) parameter, respectively.

In the framework of the present study, the evaluation of different probabilistic models in terms of
adequately representing the entire marginal distribution of the finely resolved observed water demand
records showed that, in several cases, the latter was not possible to be achieved with the use of a
single distribution. More specifically, the investigated single distributions, though resembling the main
statistical characteristics upon which they are fitted (e.g., via the method of moments or L-moments),
diverge significantly from the empirical marginals both in the body as well as the right tail of the
distribution. On the contrary, when those models are combined with a GPD to formulate a mixture
type distribution, i.e., Equation (9), a much better fitting is achieved.

This is further illustrated graphically in Figure 1 that depicts the empirical distribution of the
nonzero 1-min water demand observations, recorded in time interval 20:00–21:00 (see Section 3.1
for more information on the dataset used in the present case studies), along with the corresponding
theoretical distributions of three single models (i.e., Gamma, Weibull, Lognormal) and one mixture
model composed by Gamma and GPD. The graph presents in double logarithmic plot the probability
of exceedance, i.e., GX(x) = P(X > x) = 1−GX(x). The single distribution models (their cdf are given
in Appendix A, Table A1) were fitted with the method of L-moments [72,84], while the parameters of
the mixture model were obtained via the maximum likelihood method (see [80,83] for further details).
As Table 1 shows, single distribution models perfectly resemble the observed statistical characteristics
upon which they are fitted (i.e., L-mean and L-variation), providing also a good approximation to
observed L-skewness and L-kurtosis which are not involved in the fitting procedure. Despite this,
Figure 1 reveals that these models show a significant divergence from the empirical distribution of the
observed data for values greater than the quantile x = 7 L/min. On the contrary, the Gamma-GPD
mixture model provides a much better approximation both to the body and the tail of the observed
distribution, resembling also well the under study statistics (see Table 1).

Table 1. Comparison between observed and theoretical summary statistics of the five distributions
under study for the indicative example.

Observed G W LN G-GPD

Mean, µ 1.751 1.751 1.751 1.751 1.742
L-variation, τ2 0.720 0.720 0.720 0.720 0.695
L-skewness, τ3 0.592 0.559 0.592 0.658 0.577
L-kurtosis, τ4 0.317 0.295 0.358 0.474 0.342

In the present study, we exploit the flexibility of Nataf-based models, allowing the use of any
distribution model, and we employ this mixture-type distribution, in cases where simpler models



Water 2019, 11, 885 11 of 32

cannot provide a good fit. Further to this, to describe the entire marginal behaviour of water demand
process at fine time scales via a single cdf model, we embed Equation (9) within Equation (8) to account
simultaneously for intermittency (discrete part) as well as the body and tail behaviour of the continuous
part (see Section 3).
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2.5. Demonstrating NDM Approach

Prior to studying the application of NDM for the simulation of water demand stochastic processes,
which is the main subject of the present work, here we provide a comprehensive demonstration of
the entire approach, as described in Sections 2.2 and 2.3, via a numerical example. More specifically,
we examine the problem of generating RVs X1 and X2 which both follow the Weibull distribution
and have target correlation ρ1,2 = 0.75. We assume that the parameter values for the distribution of
both variables are β = 1.01 and γ = 0.54 (see Table A1 in Appendix A for more details on Weibull
distribution).

Given the target marginal distribution and correlation, initially, the equivalent correlation ρ̃1,2 of
the auxiliary standard normal variables Z1 and Z2 is obtained. This is achieved by first establishing
T (·) that provides the relationship between the target and equivalent correlations for the specified
distributions. In the present work, we employed the numerical scheme proposed by Tsoukalas et al. [51]
according to which the true T (·) is approximated by a polynomial function (see Section 2.3 for more
information). In the present example, the following quadratic function is derived:

ρ1,2 = T
(
ρ̃1,2

∣∣∣FX1(x1), FX2(x2)
)
= 0.5465ρ̃2

1,2 + 0.4457ρ̃1,2 (10)

The established relationship between target and equivalent correlations is further illustrated in
Figure 2a. The equivalent correlation ρ̃1,2 of the Gaussian variables can be then obtained by solving the
simple Equation (10) for the given target correlation. For this case, for ρ1,2 = 0.75, we get ρ̃1,2 = 0.834.
Next, we generated 100,000 values from the bivariate standard normal distribution having the specified
equivalent correlation. The scatter plot as well as the marginal distributions of these auxiliary variables
are presented in Figure 2b. These variables are first mapped to the uniform domain via the cdf
of the standard normal distribution Φ(·), providing correlated values that have uniform marginal
distributions (see Figure 2c). The correlated uniformly distributed variables are then mapped to the
actual domain (see Figure 2d), according to Equation (1), to provide variables with the target marginal
distributions and correlation. As explained above, the use of the ICDF of the target distribution (the
Weibull in this example) as a mapping function ensures that the final variables will have the desired
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marginal properties, while the assignment of a technically inflated value to ρ̃1,2 allows to attain the
target correlation ρ1,2 after the mapping operation.
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2.6. Moving from Random Variables to Stochastic Processes

As already mentioned above, NDM can be also applied to generate synthetic time series with the
desired marginal distributions and stochastic structure (in terms of autocorrelation and cross-correlation
coefficients). In this case, a Gaussian process is employed to generate auxiliary time series which are
then mapped via the ICDF of the target distributions to obtain the target process. Although Gaussian
process can be regarded as an intermediate auxiliary step in the whole procedure, its role is crucial since
its structure determines that of the target process, e.g., to simulate a stationary auto-correlated process
then a stationary Gaussian process should be employed, while the generation of cyclostationary time
series requires the use of a cyclostationary Gaussian model as auxiliary. Summarising, the choice of
the auxiliary process that is going to be implemented in the NDM concept is a matter of modelling
requirements and convenience.

As mentioned in Section 2.1, different auxiliary models have been used in the existing Nataf-based
schemes. In fact, as discussed in Tsoukalas et al. [52], any linear stochastic model could be used to play
this role. For instance, Papalexiou [53] used the sum of independent autoregressive processes (e.g.,
see [85–87]) to generate Gaussian time series.

In the present work, taking into account the peculiarities of residential water demand process
at the timescales under study (i.e., hourly and sub-hourly scales) and without loss of generality,
we employ stationary and cyclostationary autoregressive models to simulate the auxiliary Gaussian
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process. Prior describing these models, let us introduce some notations that allow the transition from
random variables to processes.

Beginning from the stationary case, let Xt be a target process, where t = 1, 2, . . . , is the time
index, with target marginal distribution FX and autocorrelation structure ρτCorr[Xt, Xt+τ], where τ
is the time lag. Furthermore, let Zt be the stationary Gaussian auxiliary process with zero mean and
unit variance and autocorrelation structure ρ̃τCorr[Zt, Zt+τ]. In order to align the bivariate NDM, as
presented in Section 2.2 for the case of random variables, with stationary stochastic processes, we have
to set throughout Equations (1)–(7), X1Xt and X2Xt+τ for the target process, as well as Z1Zt and Z2Zt+τ

for the auxiliary, accordingly.
The most prominent linear stochastic model, used in a variety of applications and scientific

fields, is the autoregressive model of order p (i.e., AR(p)). This can be attributed to its parsimony and
simplicity as well as to its intuitive structure since the model implies that the present value of the
process is obtained as the weighted sum of p past values and a random component. According to
AR(p), a standard Gaussian process Zt ∼ N(0, 1), with specific autocorrelation structure ρ̃τ, is obtained
by the following recursive formula:

Zt = ã1Zt−1 + ã2Zt−2 + . . .+ ãpZt−p + β̃εt, (11)

where εt are i.i.d variables (white noise) that follow the standard Normal distribution, i.e., εt ∼ N(0, 1),
while ãi, with i = 1, . . . , p, and β̃ are model parameters. The parameters ãi are derived analytically on
the basis of the Yule–Walker system, given the values of ρ̃τ up to lag p. This reads as:

ã = P̃
−1
ρ̃ (12)

where:

ã =


ã1

ã2
...

ãp

, P̃ =


1 ρ̃1 ρ̃2 · · · ρ̃p−1

ρ̃1 1 ρ̃1 · · · ρ̃p−2
...

...
... · · ·

...
ρ̃p−1 ρ̃p−2 ρ̃p−3 · · · 1

, ρ̃ =


ρ̃1

ρ̃2
...
ρ̃p

. (13)

In order for an AR(p) process to be stationary, certain conditions for the parameters ãi should be
fulfilled (e.g., see [88]).

Parameter β̃ essentially expresses the variance of the random component in Equation (11) and it
can be estimated by:

β̃ =
√

1− ã1ρ̃1 + ã2ρ̃2 + . . .+ ãpρ̃p (14)

In the AR(p) model, since εt are generated from the Normal distribution, the random process Zt

will be also Gaussian. Furthermore, this model ensures the preservation of a given autocorrelation
structure up to lag p, whereas for higher lags the model gives a gradually decay autocorrelation
structure, i.e., at any lag τ ≥ p + 1 the modelled autocorrelation is given by ρ̃AR

τ =
∑p

i=1 ãiρ̃τ−i.
The stationary AR(p) model can be easily adjusted to account for cyclostationarity, i.e., in cases

where the distribution and correlation structure of the process vary periodically from season-to-season.
In this case, the model is termed as periodic autoregressive model of order p (i.e., PAR(p)), and further to
the time index t, it is convenient to employ another index s = 1, . . . , S that denotes the season (e.g., S = 12
for processes exhibiting month-to-month variation or S = 24 for hour-to-hour variation). Subsequently,
the cyclostationary process reads as Zs,t. Accordingly, ρ̃s,s−τ now represents the correlation between
season s and s− τ. Reasonably, model parameters will also depend on season s. Particularly, in the
case of PAR(1) model, the model generating equation reads (the index t is omitted for simplicity):

Zs = ãsZs−1 + β̃sεs (15)
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where ãs = ρ̃s,s−1, β̃s =
√

1− ãs2 and εs ∼ N(0, 1).
As presented in Section 3, in the present work, AR(p) was used as an auxiliary model in the

simulation of residential water demand processes at sub-hourly time scales (see Sections 3.1 and 3.2),
while to capture the hour-to-hour variation of hourly water demand (see Section 3.3) we employ the
PAR(1) model.

2.7. Modelling the Dependence Behaviour of Water Demand

Further to the marginal distributions, Nataf-based models aim to capture and reproduce the
dependence behaviour of a process as expressed by its stochastic structure. As explained above, the use
of Pearson’s correlation coefficient, as linear measure of dependence, arises naturally since linear
stochastic models are employed to establish dependence in time. However, as it is known the estimation
of empirical correlations, as well as of the other second-order statistics, subjects to important bias
(e.g., [89,90]), especially in cases of small samples, large lags and intense (persistent) autocorrelation
structures, i.e., large autocorrelation values that extend for large lags. This issue has been studied in the
domain of hydrological variables (e.g., [63,91]), while Dimitriadis and Koutsoyiannis [92] compare the
suitability of other tools to identify the auto-dependence structure of a process. These sources of bias
are also encountered in residential water demand processes since the available observed records are
typically short, while their autocorrelation structure exhibits a more persistent behaviour as the time
scale becomes finer. Due to this, a theoretical autocorrelation structure (ACS) is typically preferred
over the direct use of the empirical sample estimates. Further to the above, the use of a suitable ACS
is favored for a series of other reasons. Firstly, it ensures the stability of the linear stochastic models
given that a properly defined ACS provides positive definite autocorrelation structures, which is a
prerequisite so as the latter to be valid (see [68] for more details). Furthermore, it can be regarded as a
parsimonious procedure since the whole structure is described via a small set of parameters, enabling
the extrapolation of correlation coefficients for lags as high as desired (1/3 of the sample size is the
typically suggested as the maximum lag up to which empirical correlations can be properly estimated).
Lastly, it enables the transferability of ACS parameters in cases where the sample size does not allow
for a proper identification of the correlation structure and stable estimation of coefficients. The latter is
of high importance in water demand modelling since observed records at fine time scales are typically
limited both in terms of the number of meters and the length of records. In the present work, it is the
first time that an ACS is employed to characterise the auto-dependence properties of residential water
demand processes.

Various theoretical models to represent the correlation structure of stationary processes can
be found in the literature (e.g., [53,86,89,90]). Here, we employ the Cauchy-type autocorrelation
structure (CAS) proposed by Koutsoyiannis [63] as a simple and parsimonious model, able to capture
a wide range of short- and long-range dependence structures. The power-type CAS, for positive ACF,
is given by:

ρCAS
τ (κ, β) = (1 + κβτ)−1/β, τ ≥ 0 (16)

where β ≥ 0 and κ > 0 are model parameters that control the form of the function and hence
the degree of dependence. For β = 0, CAS provides a short-range autocorrelation structure, i.e.,
an exponential structure that decays rapidly and diminishes after few time lags. On the contrary,
for β > 1, CAS resembles long-range autocorrelation structures, i.e., slowly decreasing structure that
extends for large lags. For other values of parameters, the function provides the flexibility to represent
autocorrelation structures between, or even outside of, the two cases explained above (see [63] for
further details).

The estimation of CAS parameters can be obtained by minimizing the error between the sample
and theoretical correlation coefficients, on the basis of the least squares method. In the present study,
our target was to achieve a good overall fit to a specific number of autocorrelations but with an extra
care regarding the preservation of empirical lag-1, i.e., by setting a larger weight in the objective
function for this quantity.
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The above modelling strategy has been recently employed within NDM-based approaches
for hydrological process modelling. In the NDM concept, Tsoukalas et al. [52] used CAS model,
while Papalexiou [53] proposed a series of parametric ACS models exploiting their structural similarity
with the form of common complementary cumulative distribution functions.

2.8. Summary of the Modelling Approach Step-by-Step

In the present section, we summarise the stochastic modelling framework for residential water
demand processes via the following steps:

1. Select and fit the suitable marginal distributions (i.e., continuous, mixed; see Section 2.4) and
autocorrelation function (see Section 2.7) that better capture the distributional properties and
autocorrelation structures, respectively, of the observed time series.

2. Given the target autocorrelation structure ρτ (derive either from a theoretical autocorrelation
model or as it is estimated directly from the data), establish the correlation transformation
function and estimate the equivalent correlation coefficient ρ̃τ up to the maximum specified lag τ
(see Section 2.3).

3. Identify the suitable auxiliary Gaussian linear stochastic model (e.g., AR(p) and PAR(p);
see Section 2.6) and fit it on the basis of ρ̃τ.

4. Generate a realization zt of the auxiliary process Zt at the Gaussian domain.
5. Use the ICDF of the fitted distribution to map the synthetic time series zt to the actual domain

(i.e., Equation (1)) and obtain the final realization xt of the target process Xt.

The above described steps, summarising the methods and tools of Section 2, have been
implemented in the R programming language [93], in the form of an R package, named anySim
(the package is available at: http://www.itia.ntua.gr/en/softinfo/33/; [94]).

3. Case Studies

The stochastic modelling strategy was applied and evaluated in the simulation of residential water
demand at three different temporal scales which are typically involved in WDS applications, i.e., 1-min
(Section 3.1), 15-min (Section 3.2) and 1-h (Section 3.3). Furthermore, these three case studies allow
the assessment of the modelling approach on the basis of a variety of different marginal behaviours
and correlation structures which are usually observed in the water demand records at these time
scales. This further demonstrates that a single modelling strategy suffices for the reproduction of
the peculiarities of residential water demand at any time scale, without requiring the use of ad-hoc
techniques or scale-specific adjustments.

The observed data used in the present study concerns a total water demand record of 1-min
resolution from a single household in Athens (Greece). The data was collected via a smart metering
equipment installed in the framework of the iWIDGET project [95] and concern an observation period
of 5 months, spanning from 1 October 2014 to 31 March 2015. This record was selected due to the
quality of data (i.e., small percentage of missing values) and the regular consumption of water, while a
shorter part of this dataset has been also used in past studies [22,27]. The employed dataset was initially
examined for negative or unrealistically large values due to smart meter malfunctions. All negative
values and the values greater than 50 L/min were excluded from the analysis. The 15-min and hourly
records were obtained by aggregating temporally the 1-min data at the corresponding time intervals,
flagging as missing and excluding from the analysis the values with at least one missing 1-min value.

The performance of the modelling strategy was evaluated by comparing several relevant properties
and characteristics of the simulated series with the observed one. Since the stochastic methodology
enables the explicit reproduction of the marginal distribution and the dependence structure of the
process under study, we initially examine the capability of the model to resemble the empirical
cumulative distribution functions (both probability of no demand and the distribution of nonzero
values) and the Pearson’s autocorrelation coefficients of the observed series. To further assess and verify

http://www.itia.ntua.gr/en/softinfo/33/
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the model as a fully operational tool, we employed a series of different empirical characteristics which
are not directly involved in the model’s fitting, but their reproduction is regarded of high importance
in WDS applications. These characteristics have been also used in the evaluation of pulse-based
schemes [18,28,33] and concern: (1) the total water demand per day, V(L/d), which is the total volume
of water consumed within a day; (2) the maximum flow per day which is the highest consumption
of the day at the temporal scale of measurement, e.g., Qmax (L/min) or Qmax (L/15-min); and (3) the
maximum hourly demand, Qmax (L/h), which is the highest hourly consumption of the day.

3.1. Simulation of 1-min Water Demand

The first application concerns the simulation of residential water demand at a fine temporal
scale (1-min resolution). At this scale the process is characterised by especially high proportion of
zero values pND, highly skewed distributions and strong autocorrelation structures. Furthermore,
water demand characteristics exhibit a significant variation within the day, and, thus, the analysis and
modelling is typically conducted by subdividing the day into shorter time intervals (e.g., typically
with 1 or 2 h length) where the process can be assumed as stationary. In the present study, we treat
1-min water demand of each hour as a separate stationary stochastic process, and hence we apply the
modelling strategy twenty-four times, varying the distribution function and autocorrelation structure
from hour-to-hour. This implies that the series of each hour of the day has a different distribution
and correlation function, while for the sake of simplicity and parsimony we do not assume different
processes for working and weekend days.

Following the steps of the modelling strategy described in Section 2.8, initially, the most suitable
probabilistic models to describe the marginal properties of 1-min water demand records at each time
interval is identified. Due to the intermittent nature of the process, a mixed model (Section 2.4), given in
Equation (8), was employed to describe simultaneously both the discrete and continuous part of the
marginal distribution. The discrete part of the model, i.e., probability of no demand pND, was obtained
directly by dividing the number of zero values with the total number of recorded data. Regarding
the continuous part GX of the mixed model, in the present study we used the two-parameter Gamma
(G), Weibull (W) and Lognormal (LN) distributions as well as their combination with the Generalised
Pareto distribution (GPD), i.e., the mixture model of Equation (9). Furthermore, the three-parameter
Generalised Gamma distribution (GG) was also employed. The above models were fitted to the
nonzero 1-min water demand data (either via the method of L-moments or maximum likelihood;
see Section 2.4) and the most suitable to describe the record of each individual time interval was
identified in terms of approximating adequately the entire empirical distribution of the observed data.
These distributions were selected for the demonstration purposes of the present case study and they
could be replaced by any other model as implied by the flexible structure of the modelling strategy.
The estimated pND as well as the empirical probability distributions of the fitted models along with
their parameters for the 1-min demand records of each hour of the day are given in Figure A1 of
Appendix B.

Further to the marginal distributions, to model the autocorrelation structures we employed
the power-type CAS given in Equation (16). The parameters of CAS were obtained for each time
interval by minimizing the mean square error (MSE) between the sample and theoretical correlation
coefficients. The empirical autocorrelation structures along with the fitted CAS and its parameters are
graphically presented in Figure A2. Given the target autocorrelation structure ρτ and the marginal
distributions, theT (·), given in Equation (7), was established following the numerical scheme proposed
by Tsoukalas et al. [51] and the equivalent correlation coefficients ρZ were obtained for each time
interval. The visual inspection of autocorrelation structures of 1-min water demand records showed
that ρτ is practically equal to zero for τ > 10 in most hourly intervals and, thus, an AR(10) model was
selected and fitted to ρ̃τ, for τ = 1, 2, . . . , 10, to generate the auxiliary time series. The final time series
was then obtained by mapping the Gaussian series to the selected distribution for each time interval.
In the present case study, we generated synthetic data of 4 000 days length (4 000 × 24 × 60 values).
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The application of the methodology is summarised in Figure 3 that presents the results of the simulation
of 1-min water demand of three representative hourly intervals of the day, i.e., a night, a morning and
an evening hour. More specifically, plots Figure 3a,b depict the observed and synthetic 1-min water
demand data of a typical day. The efficiency of the method in terms of reproducing exactly the target
distributions of the nonzero demand values as well as the probability of no demand is illustrated in
the panels (c) and (e) of Figure 3 as well as in the probability plots of Figure A1. Furthermore, panels
(f)–(h), along with plots in Figure A2, present graphically the capability of the model to resemble the
target autocorrelation structures, while panels (i)–(k) depict the relationships between the target and
equivalent correlation coefficients for the mixed-type model as well as for the distribution fitted to the
nonzero demands. As we see, the presence of zero values has as a result the intense divergence of the
relationship from linearity.Water 2019, 11, x FOR PEER REVIEW 17 of 33 

 

 

Figure 3. Simulation of 1-min residential water demand: (a) Observed 1-min data of a typical day. (b) 

Synthetic 1-min time series of a randomly selected day. (c)–(e) Observed, theoretical and simulated 

distribution functions (Weibull plotting positions and in logarithmic scale) of the nonzero water 

demand values for three representative hours of the day; each graph also displays the parameters of 

the fitted distribution as well as the observed 𝑝𝑁𝐷 and simulated 𝑝̂𝑁𝐷 values of probability of no 

demand. (f)–(h) Observed, theoretical and simulated autocorrelation functions of three representative 

hours of the day; each graph also displays the parameters of CAS. (i)–(k) the established relationship 

between the equivalent 𝜌𝑍 and target 𝜌𝑋 correlation for the mixed-type distribution as well as the 

distribution fitted on nonzero demand values.        

Furthermore, Figure 4 presents the performance of the stochastic methodology in a series of 

important characteristics which are not explicitly modelled by the former. More specifically, as we 

see in Figure 4a the cdf of the entire simulated 1-min water demand series resembles the observed 

one, while as Figure 4b shows that the model achieved a very good performance in terms of 

reproducing the observed daily volumes. Regarding the reproduction of extremes (Figures 4c,d), the 

cdfs of both nonzero maximum 1-min demand per day, Qmax (L/min), as well as maximum hourly 

demand per day, Qmax (L/h), produced by the model are in high agreement with the observed one, 

overestimating slightly the amounts with very low probability of exceedance. 

Figure 3. Simulation of 1-min residential water demand: (a) Observed 1-min data of a typical day.
(b) Synthetic 1-min time series of a randomly selected day. (c)–(e) Observed, theoretical and simulated
distribution functions (Weibull plotting positions and in logarithmic scale) of the nonzero water demand
values for three representative hours of the day; each graph also displays the parameters of the fitted
distribution as well as the observed pND and simulated p̂ND values of probability of no demand.
(f)–(h) Observed, theoretical and simulated autocorrelation functions of three representative hours of
the day; each graph also displays the parameters of CAS. (i)–(k) the established relationship between
the equivalent ρZ and target ρX correlation for the mixed-type distribution as well as the distribution
fitted on nonzero demand values.
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Furthermore, Figure 4 presents the performance of the stochastic methodology in a series of
important characteristics which are not explicitly modelled by the former. More specifically, as we see
in Figure 4a the cdf of the entire simulated 1-min water demand series resembles the observed one,
while as Figure 4b shows that the model achieved a very good performance in terms of reproducing
the observed daily volumes. Regarding the reproduction of extremes (Figure 4c,d), the cdfs of both
nonzero maximum 1-min demand per day, Qmax (L/min), as well as maximum hourly demand per
day, Qmax (L/h), produced by the model are in high agreement with the observed one, overestimating
slightly the amounts with very low probability of exceedance.Water 2019, 11, x FOR PEER REVIEW 18 of 33 
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3.2. Simulation of 15-min Water Demand

The second case study involves the simulation of residential water demand at a medium resolution
scale, i.e., 15-min. This is the typical metering resolution of the available energy-efficient, cost-effective
and with long lifetime smart metering devices, and it consists the typical temporal scale of many WDS
applications. In the present case study, we followed the same approach as in the simulation of 1-min
water demand (see Section 3.1) regarding the effect of seasonality, treating the process of each hour
of the day as stationary and hence varying the distribution function and autocorrelation structure
from hour-to-hour.

The mixed model of Equation (8) was employed to describe the marginal distribution of the
intermittent process, while the distributions described in previous case study were also examined as
candidates to model the nonzero 15-min demands of each time interval. The estimated pND as well as
the empirical probability distributions of the fitted models along with their parameters for the 15-min
demand records of each hour of the day are given in Figure A3 Appendix B. Again, the power-type
CAS, given in Equation (16), was used to model the autocorrelation structure and T (·), given in
Equation (7), was established to provide the equivalent correlation coefficients ρ̃τ for each time interval.
In the simulation of 15-min demand, an AR(3) model was selected to generate the Gaussian series,
since the analysis of autocorrelation structures of the records showed ρτ is practically equal to zero for
τ ≥ 4 in most hourly intervals.
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For demonstration, we generated synthetic data of 4 000 days length (4 000 × 24 × 4 values),
conducting a similar analysis with the above case study. The results are summarised in Figure 5
that depicts three representative hourly intervals of the day, i.e., a night, a morning and an evening
hour. More specifically, Figure 5a,b present the observed and synthetic 15-min water demand data,
respectively, of a typical day. In the plots (c)–(e) of Figure 5 along with probability plots of Figure A3,
we can see that the method reproduces exactly the target distributions of the nonzero demand values
as well as the probability of no demand. Additionally, the capability of the model to resemble the
target autocorrelation structures is graphically illustrated in panels (f)–(h) and in the plots of Figure A4,
while panels (i)–(k) depict the established relationships between the target and equivalent correlation
coefficients for the mixed model as well as for the distribution fitted to the nonzero demands.
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Figure 5. Simulation of 15-min residential water demand: (a) Observed 15-min data of a typical
day. (b) Synthetic 15-min time series of a randomly selected day. (c)–(e) Observed, theoretical and
simulated distribution functions (Weibull plotting positions and in logarithmic scale) of the nonzero
water demand values for three representative hours of the day; each graph also displays the parameters
of the fitted distribution as well as the observed pND and simulated p̂ND values of probability of no
demand. (f)–(h) Observed, theoretical and simulated autocorrelation functions of three representative
hours of the day; each graph also displays the parameters of CAS. (i)–(k) the established relationship
between the equivalent ρZ and target ρX correlation for the mixed-type distribution as well as the
distribution fitted on nonzero demand values.
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As it is further demonstrated in Figure 6a,b, the cdf of the entire simulated 15-min water demand
series as well as the cdf of synthetic daily volumes resemble with precision the observed ones.
Furthermore, the model has the capability to reproduce the behaviour of observed extremes as revealed
by Figure 6c,d that present the cdf of the nonzero maximum 15-min demand per day, Qmax (L/15-min),
and the cdf of maximum hourly demand per day, Qmax (L/h), respectively.Water 2019, 11, x FOR PEER REVIEW 20 of 33 
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in logarithmic scale) of: (a) the entire 15-min water demand series, (b) total water volume per day,
(c) maximum nonzero 15-min demand per day, (d) maximum nonzero hourly demand per day.

3.3. Simulation of 1-h Water Demand

The final case study concerns the simulation of residential water demand process at hourly scale,
which is the typical temporal scale of analysis of many real-world WDS applications and distribution
network simulation models. At this time scale, the process is characterised by strong seasonality
and hence it is treated as cyclostationary with marginal distributions and correlation structures that
vary periodically from season-to-season. Having said this, we follow the same approach as in the
previous two case studies treating hourly water demand at each hour of the day as a separate stochastic
process with common marginal distribution, while in the present case the correlation coefficients
express the dependence of hourly demand among successive hours. To capture this hour-to-hour
variation of hourly water demand and establish this stochastic structure we built upon the SPARTA
approach [51,54], and particularly, we employ a 24-season PAR(1) model (see Section 2.6) for the
generation of auxiliary Gaussian series. To demonstrate the stochastic modelling strategy in this
concept, we generated synthetic hourly water demand data of 4 000 days length (4 000 × 24 values),
performing a similar analysis as in the previous two case studies.

Regarding the marginal properties of the hourly water demands, the process still have an
intermittent nature, despite the fact that the observed pND values are much smaller compared to
those of 1-min and 15-min scales, while the distributional behaviour of the nonzero values deviates
significantly from Gaussianity. Due to this, the cyclostationary stochastic model is coupled with
the mixed-type distribution of Equation (8) to describe the entire marginal behaviour of the process.
More specifically, we fit and evaluate the two-parameter Gamma, Weibull and Lognormal distributions
as well as the three-parameter Generalised Gamma distribution (GG) to model the positive demand
quantities. Figure 7 displays the observed and simulated pND values as well as the observed, theoretical
and simulated empirical probability plots of the nonzero hourly water demand records of each hour
of the day. As we see, the mapping operation, i.e., Equation (1), employed by the method ensures
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the perfect reproduction of the hourly-varying probabilities of no demand as well as the perfect
resemblance of the assumed target theoretical distribution models by the simulated data.
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Furthermore, the performance of the stochastic model in terms of reproducing the target
hour-to-hour correlation coefficients is graphically presented in Figure 8. As shown, the model,
further to the marginal distributions, captures perfectly the great variety of lag-1 correlations of hourly
water demand which is observed within a day.Water 2019, 11, x FOR PEER REVIEW 22 of 33 
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Finally, for demonstration purposes, Figure 9a,b depict the time series of a sequence of 10 randomly
selected consecutive days of observed and synthetic hourly demands, respectively. Additionally,
the capability of the model to capture the cdf of the entire observed hourly water demand series and
the series of the observed total daily volumes is graphically presented in Figure 9c,d, respectively. It is
noted that the model adequately captures the empirical distribution of the whole series, although not
directly modelled by it. A fact that can be attributed to the preservation of the cyclostationary behavior
of the process, in terms of both marginal and dependence properties.
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Figure 9. (a) Observed hourly water demand data of 10 days. (b) Synthetic hourly water demand
data of 10 days. (c) Observed and simulated cumulative distribution functions (Weibull plotting
positions and in logarithmic scale) the entire hourly water demand series. (d) Observed and simulated
cumulative distribution functions (Weibull plotting positions and in logarithmic scale) of total water
volume per day.



Water 2019, 11, 885 23 of 32

4. Summary and Conclusions

Due to the key role of water demand processes in the uncertainty-aware planning and management
of urban water systems, the pursuit of adequately representing and simulating such processes has
been a challenge that occupied many researchers over the years and resulted in the development
of numerous simulation schemes. Depending on the time scale of analysis (which is typically a
fine one), water demand processes exhibit a variety of marginal and dependence (expressed via
auto-or cross-correlations) characteristics (e.g., non-Gaussianity, intermittency, auto-dependence) that
should be reproduced by the stochastic model. However, already existing stochastic models provide a
partial solution to the problem since they focus either on the marginal behavior of a process or on its
dependence structure, and do not consider simultaneously both aspects.

Aiming to provide a remedy, and eventually a satisfactory modelling and simulation strategy
for water demand processes, this work employs for the first time in the WDS modelling domain,
the so-called Nataf-based stochastic models that entail the coupling of linear stochastic models with
quantile mapping procedures. This type of models, recently employed to address challenging stochastic
simulation problems for non-Gaussian hydrometeorological processes [51–53], build upon the notion
of Nataf’s joint distribution model [47] which provides a sound theoretical background, as well as the
necessary flexibility to account for a wide range of processes with arbitrary marginal distributions and
correlation structures.

The generality, as well as the flexibility provided by the Nataf-based modelling strategy (detailed
in Section 2 and summarized in Section 2.8) is stress-tested through three distinct simulation studies that
are of particular interest for urban water systems (Section 3). These concern the stochastic simulation of
water demand processes at three characteristic time scales (i.e., 1-min, 15-min and 1-h), which arguably
exhibit a variety of peculiarities, thus emphasizing different aspects of the method.

The main outcome from the simulation studies is that the employed modelling strategy is sufficient
for the simulation of water demand process (stationary or cyclostationary) at any time scale (from 1 h
down to 1 min), proving capable of reproducing simultaneously both the marginal and dependence
properties of the processes without sacrificing neither precision nor parsimony. Particularly, it is
highlighted that depending on the observed process characteristics, the method can be combined with
a three-component mixed-distribution model (an additional contribution of this work) to provide an
explicit representation of the entire target marginal distribution, accounting also for intermittency and
tail behavior. Further to this, we move beyond the reproduction of empirical temporal correlations
(typically involving few time lags) to a more complete and parsimonious description of the process’s
temporal dependence properties through the use of theoretical correlation structures.

We argue that this work provides an interesting alternative to the prominent pulse-based methods
(that mainly provide a moments-based representation of a process) for simulating water demand
processes, introducing, for the first time within water demand process simulation, classic and easy
to implement linear stochastic models. In our view, this approach, exploiting the flexibility (in
terms of admissible distributions and correlations structures) of Nataf’s model, as well as knowledge
derived from large scale studies (e.g., in the spirit of Kossieris and Makropoulos [39]) which allow
for a better understanding of the probabilistic laws and correlations that describe water demand,
can greatly contribute to the widespread use of alternative stochastically generated water demand
realizations, for a more uncertainty-aware design and management of urban water systems. Potential
domains of future research could focus on the simulation of spatio-temporal water demand processes
at node or household levels, thus accounting also for spatial dynamics. Furthermore, the proposed
methodology could be also extended and studied in a disaggregation framework to allow the capturing
of probabilistic and stochastic behaviour of water demand across multiple time scales, as well as for
short-term and long-term forecasting.
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Appendix A

This Appendix includes the probability density functions of the probabilistic models used in the
present paper.

Table A1. Probability density functions of the distributions used in the present work.

Distribution Probability Density Function

Gamma (G) fG(x) = 1
βΓ(γ)

(
x
β

)γ−1
exp

(
−

x
β

)
, x > 0

where β > 0 is the scale parameter and γ > 0 the shape parameter.

Weibull (W) fW(x) = γ
β

(
x
β

)γ−1
exp

(
−

(
x
β

)γ)
, x > 0

where β > 0 is the scale parameter and γ > 0 the shape parameter.

Lognormal (LN) fLN(x) = 1
√
πγx

exp
(
−ln2

(
x
β

)1/γ
)
, x > 0

where β > 0 is the scale parameter and γ > 0 the shape parameter.

Generalised
Gamma (GG)

fGG(x) =
γ2

βΓ(γ1/γ2)

(
x
β

)γ1−1
exp

(
−

(
x
β

)γ2
)
, x > 0

where β > 0 is the scale parameter, while γ1 > 0 and γ2 > 0 are the shapes
parameters that control the behaviour of the left and right tail, respectively.

Generalised
Pareto (GPD)

fGPD(x) = 1
β

(
1 + γ(x−c)

β

)(−1/γ−1)
, x > c

where β > 0 is the scale parameter, γ the shape parameter and c the location
parameter (threshold).

Appendix B

This Appendix comprises complementary graphs associated with the case studies presented in
Sections 3.1 and 3.2.

http://www.itia.ntua.gr/en/softinfo/33/
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