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a b s t r a c t

Transformation products (TPs) can be formed from organic micropollutants in the water cycle through
both biological and technological processes. Despite the TPs' potentially altered toxicity compared to
their parent compounds, transformation processes are not routinely monitored, and in particular those
induced by drinking water treatment remain elusive. This lack of information is mainly due to the
technical challenges in analyzing TPs, which are often unknown compounds occurring in low concen-
trations. Their analysis requires sophisticated analytical techniques such as non-target screening (NTS)
based on high-resolution tandem mass spectrometry (HRMS/MS) methods combined with novel data
analysis approaches. Here, we addressed the challenges of TP analysis and the scarcity of TP research
concerning studies in drinking water. We performed lab-scale experiments to monitor TP formation of
three organic micropollutants prevalent in drinking water sources, i.e. carbamazepine, clofibric acid and
metolachlor, during rapid sand filtration and ozonation, two readily applied biotic and abiotic drinking
water treatments, respectively. To facilitate TP identification in the NTS data, halogenated and/or
isotopically labeled parent compounds were used, revealing potential TPs through their isotopic patterns.
The experimental results showed that degradation of the parent compounds and TP formation were
treatment and compound specific. In silico TP prediction and literature mining enabled suspect screening
of the non-target data and thereby significantly enhanced TP identification. Overall, the developed
workflow enables an efficient and more comprehensive assessment of drinking water quality changes
during water treatment.
© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Abbreviations

HRMS/MS high-resolution tandem mass spectrometry
log2FC log2 fold change
NTS non-target screening
RSF rapid sand filtration
RT retention time
TP transformation product
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1. Introduction

1.1. Drinking water treatment induced transformation of organic
micropollutants

Organic micropollutants can enter the aquatic environment
manifold, through routes such as atmospheric deposition, waste
water effluent, spills, and leakage, and consequently contaminate
drinking water sources (Kolpin et al., 2002; Oenema and Pietrzak,
2002; Stackelberg et al., 2004). Drinking water treatment aims at
removing these chemicals. Therefore, treatment processes are
optimized and validated using compound removal rates (Guzzella
et al., 2002; Tang et al., 2012; Wols et al., 2013). However, instead
of complete mineralization, transformation of parent compounds
can occur during treatment by (a combination of) biotic and abiotic
processes such as hydrolysis, photolysis, oxidation, reductive
transformation, elimination and substitution (Atkinson et al., 1999;
Bletsou et al., 2015). The resulting transformation products can
differ significantly in functionality and polarity from their parent
compounds, and thereby removal efficiencies during drinking wa-
ter treatment can be affected (Fenner et al., 2013). Moreover, TPs
can potentially exhibit increased toxicity compared to their parent
compounds (Escher and Fenner, 2011). Despite this having been
described over thirty years ago in waste water treatment (Giger
et al., 1984), current drinking water monitoring, toxicity testing,
and risk assessment still mainly focus on parent compounds, while
TPs are rarely assessed. However, from a health risk perspective, not
the removal of a compound but the reduction of adverse health
effects is the relevant drinking water parameter. It is therefore
crucial to monitor the transformation processes during drinking
water treatment and the resulting TPs.

1.2. Strategies for TP identification

TP monitoring remains challenging as most TPs are so-called
“unknown unknowns” that is compounds of which the structure
is unknown and which are not present in chemical databases.
Identifying these compounds requires non-target screening (NTS)
high-resolution tandem mass spectrometry (HR MS/MS) methods
combined with novel data analysis approaches (Schymanski et al.,
2015). Greatly simplified, there are two complementary strategies
to monitor TP formation and identify TPs from NTS data. They both
distinguish themselves from more general NTS strategies by taking
advantage of the relationships between a parent compound and its
TPs. In the case of a known parent compound, in a so-called bot-
tom-up approach, expected TPs of a given parent compound are
screened for via suspect screening. The TP suspect lists used can be
compiled of previously detected TPs found through literature and
data base mining, and TPs that are in silico predicted based on
metabolic logic or transformation rules (Schollee et al., 2015;
Wicker et al., 2016; Lee et al., 2017). Alternatively, in a so-called top-
down approach, transformation products are identified through the
statistical analysis of data patterns, such as changes of peak
intensities between samples and mass shifts indicative of trans-
formation processes (Li et al., 2017; Schollee et al., 2017) and pat-
terns reflecting structural efragmentation relationships (Schollee
et al., 2017). In addition, the use of stable isotope labeled parent
compounds spiked to experimental systems can facilitate trans-
formation product identification (Hegeman et al., 2007; Giavalisco
et al., 2009; Kolkman et al., 2015). A labeled parent compound will
be transformed into a labeled TP, given that the labeled residue is
still present in the TP. As both labeled and unlabeled compounds
exhibit the same physico-chemical properties, they are not sepa-
rated by chromatography, but can be distinguished by their mass
difference when mixed in one sample or analyzed sequentially.
While the use of isotopic labelling is limited to experimental sys-
tems, isotopic pattern filters can be used to identify TPs based on
the distinct isotopic patterns of their parent compounds for chlo-
rine and bromine containing compounds also in in situ (Nagao et al.,
2014).

1.3. Applied workflow for TP monitoring in drinking water
treatment

Here, we combined these strategies to monitor transformation
processes in drinking water treatment. The TPs of the organic
micropollutants metolachlor, clofibric acid and carbamazepine
were identified in a lab-scale experiment under well-defined con-
ditions during the biotic and abiotic drinking water treatments
rapid sand filtration and ozonation, respectively. By providing 1)
before and after treatment samples, data analysis could focus on
the differences between the two using trend and statistical ana-
lyses, and disregard all information that was the same in both, 2)
known parent compounds, potential TPs could be predicted based
on literature and models, and consequently a suspect screening of
the data against a list of predicted TPs could be performed, 3) the
possibility to use high concentrations of spiked-in parent com-
pounds, also TPs formed at low rates could be detected, 4) the
presence of the halogen chlorine, the distinct isotopic pattern of the
halogenated parent compound and TPs supported screening ap-
proaches unless dehalogenation occurred, and 5) the inclusion of
isotopically labeled parent compounds, labeled TPs could readily be
detected based on themass shift of the label. To our knowledge, this
is the first time that these methods have been applied together to
identify TPs formed in drinking water treatment.

2. Materials and methods

2.1. Chemicals

All solvents used were of analytical grade quality. Acetonitrile
(ultra-gradient HPLC grade) was purchased from Avantor Perfor-
mance Materials B.V. (Deventer, the Netherlands). Formic acid, FA
(50% in water) was obtained from Fluka Analytical (Sigma-Aldrich,
Steinheim, Germany). The ultrapure water was obtained by pur-
ifying demineralized water in an Elga Purelab Chorus ultrapure
water system (High Wycombe, UK). The internal standards
atrazine-d5 and bentazon-d6 were purchased from CDN isotopes
(Pointe-Claire, Canada) and LGC Standards (Wesen, Germany),
respectively.

2.2. Parent compounds: incorporating halogens and labels

Parent compounds were selected based on their occurrence in
drinking water sources, and the availability of an isotopically
labeled parent or the presence of a halogen. The anti-epileptic and
neuropathic pain medication carbamazepine (Supplementary
Table 1a) is one of the pharmaceuticals most frequently detected
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in the aqueous environment (Ternes, 1998). It is persistent in sand
filtration (Ternes et al., 2002), but readily reacts with ozone and
ozone TPs are well studied (McDowell et al., 2005). In addition, an
isotopically labeled standard carbamazepine-(carboxamide-13C,
15N) (Table 1, 1b), which has a 13C and a 15N incorporated at atoms
that remain in the known ozone TPs of carbamazepine, is available
(McDowell et al., 2005). Clofibric acid (Tables 1 and 2) and meto-
lachlor (Tables 1 and 3) are both herbicides that have been detected
in groundwater and surface waters (Chesters et al., 1989; Masse
et al., 1994; Ritter et al., 1994; Scheytt et al., 2001; Tixier et al.,
2003). Clofibric acid is also a human metabolite of the
cholesterol-lowering pharmaceutical clofibrate. It is a medium
biodegradable pollutant (Zearley and Summers, 2012), with a
number of known biotic (Kosjek et al., 2009b; Salgado et al., 2012;
Brox et al., 2016) and abiotic (Doll and Frimmel, 2004) TPs. Meto-
lachlor is susceptible to both biotic and abiotic degradation (Liu
et al., 1991; Stamper and Tuovinen, 1998; Steen et al., 2000;
Mersie et al., 2004; Sakkas et al., 2004; Warner and Morrow, 2007;
Orge et al., 2017), and its TPs have been shown to be more toxic
than the parent compound (Osano et al., 2002; Huntscha et al.,
2008). Both compounds exhibit a distinct isotopic pattern due to
the presence of chlorine atoms. Parent compounds were purchased
from Sigma-Aldrich (Steinheim, Germany).
2.3. Drinking water treatment

Emphasis was placed on the development of a generic approach
to monitor TPs that could be implemented across other drinking
water treatments. As environmental TPs can be formed by either
abiotic or biotic processes, a treatment representing each process
was applied. The selected treatment can then serve as a model for
other treatments with a similar transformation process.
Table 1
Change of parent compound abundance during drinking water treatment, expressed in lo
difference, change below cut-off (�0.25< log2FC < 0.25. p< 0.05), red: significant increa
2.3.1. Rapid sand filtration (RSF) as a model for biotransformation
RSF is implemented in almost every drinking water treatment

plant in the world. Its main purpose is to remove particles, iron and
manganese, ammonia, and part of the organic matter (Craft and
Eichholz, 1970), but it also facilitates the biological degradation of
a number of organic micropollutants (Zearley and Summers, 2012;
Hijnen et al., 2016; Bertelkamp et al., 2017), and can lead to mi-
crobial biotransformation (Brezina et al., 2015).

RSF was simulated in laboratory-scale columns with sand ob-
tained from a used RSF filter at the pre-treatment plant ofWaternet
(WRK, Nieuwegein, The Netherlands). In brief, the sand was
collected, mixed and transported in a closed PE bucket at 4 �C. The
sand was flushed with drinking water (KWR, Nieuwegein) prior to
transfer of the sand slurry to two glass columns (di¼ 3,5 cm,
height¼ 100 cm) to a final bed height of 80 cm, i.e. 770mL. Col-
umnswere backwashed for adequate packing and air removal. Each
columnwas fed from a 550L stainless steel tank filled with influent
water from the RSF filters (WRK, Nieuwegein, The Netherlands),
pre-filtered through 10 mm cartridge filters. Parent compounds
were added to a final spike-in concentration of 10 mg/L, which is
roughly one to two orders of magnitude higher than environmental
concentrations often found in surface waters (Loos et al., 2009;
Monteiro and Boxall, 2010; Schreiner et al., 2016). The water was
stirred mechanically for 1 h. A flow of 4.8 L/h (velocity of 5.0m/h)
was set for both columns. Influent and effluent samples were taken
at after 8 h and 96 h (4 days) of experiments, which corresponds to
437 and 5239 treated bed volumes, respectively. Transformation
experiments were run with a single parent compound at a time. In
the two column set-up, metolachlor and clofibric acid experiments
were performed in parallel for five days, followed by seven days of
column flushing with WRK water prior to labeled and unlabeled
carbamazepine experiments, again performed in parallel for five
days.
g2FC units between after/before treatment. Grey: not significant, Yellow: significant
se (log2FC> 0.25. p< 0.05), Green: significant decrease (log2FC< -0.25 p< 0.05).



Table 2
Counts of potential metolachlor (top) and clofibric acid (Bottom) Transformation products.Filtering parameters were log2FC before/after treatment >1, log2FC spike-in/no
spike >2, and p< 0.05.
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2.3.2. Ozonation as an example for abiotic transformation processes
Ozonation is an (advanced) oxidation process broadly applied

worldwide both in drinking water and in wastewater treatment
(Lawrence and Cappelli, 1977; Collivignarelli and Sorlini, 2004). The
technology is known to lead mainly to transformation of com-
pounds rather than their mineralization, and the biological effects
of formed TPs have been of concern (Genena et al., 2011; Muller
et al., 2012; Von Sonntag and Von Gunten, 2012; Segura et al.,
2013; Tay et al., 2013). There are two distinct reactions occurring
during ozonation: the direct reaction of the ozone molecule with a
target compound, and the decomposition of ozone in aqueous
medium, producing hydroxyl radicals which can in turn react with



Table 3
Overlap of transformation products of carbamazepine without (blue) and with label (Red). Features with 2 Da mass shift are listed in purple, features with same mass in blue.
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the target compound. In practice, both direct and indirect reactions
take place simultaneously. It should be noted that the published
prediction software for ozonation TPs by Lee et al. which derived
340 individual reaction rules from literature data mining to predict
the TPs of micropollutants, does not predict hydroxyl radical-
induced transformation products and could thus not be used for
the prediction of metolachlor and clofibric acid TPs (Lee et al.,
2017).
Ozonation experiments were performed using a BMT-laboratory
setup consisting of the BMT 803 BT ozone generator and two BMT
964 ozone analyzers (BMT MESSTECHNIK GMBH, Stahnsdorf, Ger-
many), and surface water from theWaternet Leiduin plant (Leiduin,
The Netherlands) spiked with no, 10 mg/L and 100 mg/L final con-
centration of each parent compound separately. For each experi-
ment, the ozone reactor was filled with 1L water sample. The ozone
generator was started with a continuous flow of oxygen at 1 N-L/
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min, and the water sample continuously recirculated in the oppo-
site direction of the gas flow. A tap was mounted to enable sam-
pling from the recycling stream. The low and high ozone
concentration samples, 60mL each, were taken after 1 and 6min,
respectively. Subsequently, the reactor was flushed and filled with
the next water sample. Ozone concentrations and gas flow were
monitored every minute to determine the ozone consumption,
which amounted to an average of 5.60± 0.32mg/L for low ozone
and 11.78± 0.65mg/L for high ozone concentrations. In blank ex-
periments, water samples were exposed to oxygen from the oxygen
concentrator without starting the ozone generator.

2.4. LC-HRMS based non-target screening

A Tribrid Orbitrap Fusion mass spectrometer (ThermoFisher
Scientific, Bremen, Germany) provided with an electrospray ioni-
zation source was interfaced to a Vanquish HPLC system (Ther-
moFisher Scientific). For the chromatographic separation an
XBridge BEH C18 XP column (150mm� 2.1mm I.D., particle size
2.5 mm) (Waters, Etten-Leur, The Netherlands) preceded by a
2.0mm� 2.1mm I.D. Phenomenex SecurityGuard Ultra column
(Phenomenex, Torrance, USA) maintained at a temperature of 25 �C
was used. The gradient started with 5% acetonitrile, 95% water and
0.05% formic acid (v/v/v), increased to 100% acetonitrile with 0.05%
formic acid in 25min, and was held constant for 4min at a flow rate
of 0.25mL/min. Prior to LC-HRMS analysis, bentazon-d6, atrazine-
d5 and benzotriazole-d4 were added to the water samples as in-
ternal standards with a final concentration of 1 mg/L; this allowed
LC-HRMS performance evaluation and quality control based on
their signal intensities, peak shapes, exact mass and retention
times. Subsequently, samples were filtered using Phenex™-RC
15mm Syringe Filters 0.2u (Phenomenex, Torrance, USA). 100 mL of
filtered sample was used for injection, and samples were measured
in triplicate. Blank samples of internal standards spiked into ul-
trapure water were run every 5e10 samples to check for carry-over
and contamination. With every batch run mass calibration was
performed using Pierce ESI positive and negative ion calibration
solution to ensure a mass error smaller than 2 ppm. The vaporizer
and capillary temperature were maintained both at 300 �C. Sheath,
auxiliary and sweep gas was set to arbitrary units of 40, 10 and 5,
respectively. The source voltage was set to 3.0 kV in the positive
mode, and�2.5 kV the negative mode respectively. The RF lens was
set to 50%. Full scan high accuracy mass spectra was acquired in the
range of 50e1000 m/z with the resolution set at 120,000 FWHM
and quadruple isolation were used for acquisition. Data dependent
MS/MS acquisition was performed for the eight most intense ions
detected in the full scan, using a High Collision Dissociation (HCD)
energy at 35% and an FT resolution of 15,000 FWHM.

2.5. Data processing and analysis

The acquired data was processed using Compound Discoverer
2.1 (Thermo Scientific, San Jose, USA) for peak picking, compo-
nentization, chlorine pattern scoring, suspect screening and auto-
matic MS2 fragment searches via mzCloud (HighChem LLC,
Slovakia). Searches were performed with 5 ppm mass tolerance.
Parameter settings are listed in SI 1.1. For each parent compound,
suspect screening was performed against an in-house curated TP
suspect list specific for the selected parent compound via the mass
list node. The in-house suspect lists were generated through liter-
ature mining for known environmental TPs and metabolites (Liu
et al., 1991; Stamper and Tuovinen, 1998; Steen et al., 2000;
Osano et al., 2002; Ternes et al., 2002; Doll and Frimmel, 2004;
Mersie et al., 2004; Sakkas et al., 2004; McDowell et al., 2005;
Warner and Morrow, 2007; Huntscha et al., 2008; Kosjek et al.,
2009b; Salgado et al., 2012; Brox et al., 2016; Orge et al., 2017),
entries in the NORMAN SusDat (http://www.norman-network.
com/?q¼node/236) and the STOFF-IDENT (https://www.lfu.
bayern.de/stoffident/) databases, and in silico prediction using
EnviPATH (Wicker et al., 2016). The suspect lists for potential TPs of
metolachlor, clofibric acid and carbamazepine are provided in SI
1.2.1, 1.2.2 and 1.2.3, respectively.

After processing, significance testing and fold change filtering
was applied to identify potential TPs. Features were categorized as
TP when their intensity increased, i.e. log2FC between after and
before treatment samples was greater than 1, indicating that the
feature was formed during water treatment, and when they
showed significantly higher intensities in the spike-in compared to
no-spike samples, i.e. the log2FC between spike-in and no spike
samples was greater than 2, indicating that the feature originated
from the parent compound. As the selected parent compounds
could be present in the source water, but at concentrations 100x
lower than the lowest spike-in concentration, this filtering step did
not compromise TP identification, and greatly reduced data
complexity. Significance testing and fold change filtering results
were illustrated using Volcano plots displaying log2FC and the
negative log 10-transformed p-values of features (Cui and
Churchill, 2003) in R (R Core Team, 2017).

The TPs thereby identifiedwere further inspected usingMS1 full
scan data in regard to suspect screening matches based on accurate
mass, and if applicable presence of a halogen or label based on
isotopic patterns ormass shift, respectively. For featuresmatching a
suspect list entry, identification was attempted using MS2 frag-
mentation data for spectral library searches against mzCloud
(HighChem LLC, Slovakia), including spectral tree searches for
fragmentation similarities, Fragment Ion search (FiSH) scoring in
Compound Discoverer 2.1 (Thermo Fisher Scientific) exploiting the
structural relationship of a parent compound and its trans-
formation products, and MetFrag queries (Ruttkies et al., 2016),
including MassBank of North America fragmentation similarity
searches.

3. Results

3.1. Parent compound degradation

Parent compound degradation in the different drinking water
treatments was assessed through comparison of peak intensities of
the parent compounds between samples and calculation of log2FC
values between parent compound peak areas in the before and
after treatment samples. We defined a significant increase as a
log2FC> 0.25, a significant decrease as a log2FC<�0.25, both with
p< 0.05 with Benjamini-Hochberg correction. These cut-offs reflect
a roughly 20% change between samples. Parent compounds with
corresponding ionization modes, molecular weight, RT and log2FC
across the different experimental conditions are summarized in
Table 1.

No significant decrease of parent compounds was observed in
sand filtration experiments. This was expected for carbamazepine,
which initially showed a slight signal increase (~30%). However,
after four days therewas no longer any difference in carbamazepine
signal between influent and effluent samples. This might be due to
sorption or/and charging. As carbamazepine is a neutral and
slightly hydrophobic compound at pH7 with a logKOW of 2.43 (US
EPA, 2012), the column might need to first stabilize. Metolachlor
and clofibric acid are known to be degraded in soil, with a DT50 of
months, and weeks to month, respectively (US EPA, 2012). A sig-
nificant decrease of these parent compounds was thus expected,
but not observed. This could result from the continuous flow of
spiked-in parent compound which might mask the decrease in

http://www.norman-network.com/?q=node/236
http://www.norman-network.com/?q=node/236
http://www.norman-network.com/?q=node/236
https://www.lfu.bayern.de/stoffident/
https://www.lfu.bayern.de/stoffident/


Fig. 1. Volcano plot of Metolachlor features (10 mg/L spike-in) detected in Sand filtra-
tion experiments after 8 h (left) and in ozonation experiments with low ozone con-
centrations (right), in positive ionization mode. Features are plotted as dots according
to fold change between effluent and influent samples (x-axis) and significance value
(y-axis).
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concentration. As biodegradation can depend on the bacterial
population present, it could be that no degradation was observed
due to the lack of appropriate microorganisms in the RSF sand
(Rauch-Williams et al., 2010; Li et al., 2012, 2013, 2016; Alidina
et al., 2014a, 2014b; Regnery et al., 2016). In the case of clofibric
acid, a significant change between effluent and influent was
observed, but did not exceed the arbitrarily defined log2FC cut-off
of �0.25. This could indicate low rates of degradation and thus
potential TP formation. A data-driven or inert tracer based cut-off
could alleviate this issue in future experiments.

In contrast, all parent compounds showed a significant decrease
in ozonation experiments, with an overall stronger decrease in
parent compound signal at higher ozone concentrations. Interest-
ingly, in the case of metolachlor ozone degradation seemed to be
dependent on the spike-in concentration, with the lower spike-in
concentrations showing less decrease in peak intensities. In
contrast, the extent of clofibric acid degradation by ozonation
seemed to be dependent on the ozone concentration, with higher
ozone concentrations leading to a stronger decrease. The decrease
of both labeled and not labeled carbamazepine was similar under
all experimental conditions, and more pronounced than that of
metolachlor and clofibric acid. The two distinct reactions occurring
during ozonation might be responsible for these results, i.e. direct
and indirect reaction of ozone with the target molecule. Carba-
mazepine is known to react directly with ozone, however, meto-
lachlor and clofibric acid react indirectly through the hydroxyl
radicals that are generated by decomposition of ozone in aqueous
medium (Lee et al., 2017).

3.2. Formation of TPs

Next, it was determined whether the degradation of parent
compounds resulted in mineralization or TP formation. Moreover,
identification of TPs, potentially specific for the different treatment
conditions was attempted. Therefore, peak areas of all features
were compared between the before and after treatment groups.
Subsequently, filtering steps were applied to reduce the peak
number to those peaks that are potential TPs. As TPs are formed
during treatment, only peaks that showed a log2FC> 1 (p< 0.05)
between treatments were kept. Additionally, peaks with a
log2FC< 2 between spike-in and no spike samples were discarded,
as these peaks could potentially be TPs that are formed from other
micropollutants and/or dissolved organic matter present in the
source water, and thus not derived from the spiked-in parent
compounds. The benefits of these filtering steps are illustrated in
the volcano plots in Fig. 1. These plots show the features detected in
metolachlor sand filtration and ozonation experiments, respec-
tively, with the log2FC plotted on the x-axis against the elog 10 of
the p-value on the y-axis. All features left of the y-axis decrease
through treatment, the features right of it increase. Features that
significantly increase with a log2FC> 1 are potential TPs. In addi-
tion, features that have a log2FC> 2 (p< 0.05) between spike-in
and no spike samples are potential TPs of the spiked-in parent
compound, i.e. here metolachlor TPs. Interestingly, although no
significant degradation of metolachlor had been observed in sand
filtration experiments (Table 1), a TP is observed.

3.2.1. Metolachlor: 1 biotic RSF TP versus 68 abiotic ozonation TPs
The filtering steps resulted in the identification of a total of 214

metolachlor TPs across all experiments (>90% in positive ionization
mode), 124 of which exhibited an isotopic pattern suggesting the
presence of a chlorine atom (Table 2, top panel). 69 of these features
were unique, and 40 were dechlorinated. Sand filtration led to the
formation of a single, dechlorinated TP already after 8 h, which
persisted through day 4. The sand filtration TP matched with the
suspect screening candidate deschlormetolachlor, which is listed in
SusDat and STOFF-IDENT, and was predicted by EnviPATH. MS2
fragmentation data shown in Fig. 2 middle panel, allowed confir-
mation of the structural identification through FiSH scoring
(Supplementary information 2.1.1, confidence level 2 according to
Schymanski (Schymanski et al., 2014)). All other TPs were formed
through ozonation, with more than half comprising the chlorine
atom. There was substantial overlap in TP formation with the
different spike-in and ozone concentrations (Supplementary
Table 2). On average, a TP was detected in three different experi-
mental conditions. Merely a single abiotic TP could be matched to a
suspect list entry, namely an EnviPATH predicted compound with
the SMILES CCC1¼C(C(¼CC]C1)C)N(C(C)CO)C(¼O)CCl and corre-
sponding chemical formula C14H20Cl1N1O2. As EnviPATH is a
prediction tool for biodegradation reactions, an overlap between
ozonation TPs and predicted biodegradation TPs was not per se
expected. However, MS2 based FiSH scoring (MS2 spectrum shown
in Fig. 2, lower panel, Supplementary Information 2.1.2) and Met-
Frag fragmentation (data not shown) confirmed the EnviPATH
predicted compound (confidence level 2), while it rejected the two
known compounds alachlor and acetochlor which have the same
accurate mass, but no fragmentation peak at m/z 176.14305.
3.2.2. Clofibric acid: abundance of biotic TPs & increase of
biodegradation over time

An overview of clofibric acid TP formation is shown in Table 2,
bottom panel, and a detailed list of identified clofibric acid TPs can
be found in Supplementary Table 3. 194 TPs were formed in all
experiments together, roughly one third of the TPs was detected in
negative ionization mode, the mode of ionization of the parent
compound. There was minor overlap between experimental con-
ditions, 161 of the 194 TPs detected across all conditions were
unique. This is due to the fact that about 80% of all TPs were
detected in sand filtration experiments, and 3 out of 4 on day 4 of
the biodegradation time course. Only 5 of the 173 biotic TPs were
chlorinated, indicating that dechlorination was one of the main
biodegradation pathways occurring. Ozonation resulted in the
formation of 13 unique TPs, only one of which was chlorinated.



Fig. 2. MS2 Fragmentation Spectra and fragment structures of the parent compound metolachlor (top), of the biotic transformation product deschlormetolachlor (middle) and the
abiotic transformation product CCC1¼C(C(¼CC]C1)C)N(C(C)CO)C(¼O)CCl.
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As was the case for metolachlor TPs, suspect list hits for clofibric
acid TPs were limited. Again one single biotic and one single abiotic
TP could be matched, specifically the EnviPATH predicted structure
CC(C)OC1¼CC]CC]C1 in sand filtration, and alpha-
hydroxyisobutyric acid in ozonation. Alpha-hydroxyisobutyric
acid was matched twice to two isobaric features with RTs
differing by less than 0.2min. Interestingly the abiotic TP had been
described in biodegradation experiments previously (Salgado et al.,
2012), and was predicted by EnviPATH. MS2 based FiSH scoring
(Supplementary Information 2.2.1) structurally confirmed alpha-
hydroxyisobutyric acid based on a single fragment ion(confidence
level 2). However, CC(C)OC1¼CC]CC]C1 could not be confirmed
based on MS2 data.

3.2.3. Carbamazepine: labeling facilitates efficient TP detection
Finally, carbamazepine experiments were performed with car-

bamazepine and labeled carbamazepine, the results of which are
summarized in Supplementary Tables 4 to 7. Experiments without
label resulted in a total of 135 potential TPs and 78 unique features,
experiments with label in 81, of which 29 unique, respectively. TPs
were detected to similar extents using positive and negative ioni-
zation mode. The discrepancy in TP abundance between the non-
labeled and labeled compound, which in theory should form the
exact same TPs without and with the label, may be related to
slightly different experimental conditions across experiments, such
as actual ozone concentrations, and bacterial populations in the
RSF. In addition, difficulties in data processing due to the shift in
isotopic distribution for the labeled TPs might be responsible for
the different results and consequently limited overlap in carba-
mazepine TPs. The latter could potentially be resolved in future
experiments by manually adding the isotopic pattern of the label to
the pattern recognition node in Compound Discoverer 2.1. The
former could be addressed by including treatment replicates in
addition to technical replicates in future studies.
In addition to the statistical testing and fold change filtering, the

labeling strategy allowed to use an additional, more stringent cri-
terion, i.e. the overlap between the two experimental groups, to
filter for features representing TPs. An added benefit here that
could also be achieved without labeling, is that the experiment is
performed in duplicate which by itself will lead to more stringent
results, and more confident TP identification. In the carbamazepine
experiments, 19 TPs overlapped as shown in Table 3. Of these, 8 TPs
showed the characteristic 2 Da mass shift, indicating that the
labeled residues were still present in the compound. The eight TPs
exhibiting the 2 Da mass shift were manually inspected for peak
duplets in the raw data of the mixed label experiment. None of the
biotic TPs showed overlap between groups, in line with what was
observed for metolachlor and clofibric acid, indicating that sand
filtration is more susceptible to slight changes in experimental
conditions, and thus less reproducible. In case of the abiotic TPs of
carbamazepine, 19 of the 24 labeled TPs from ozonation over-
lapped, representing 83% overlap.

For four of the twenty overlapping TPs, suspect list matches
were found, for two of themmultiple suspects were possible based
on the accurate mass alone. MS2 based FiSH scoring
(Supplementary Information 2.3) and MetFrag queries (data not
shown) enabled unambiguous identification of the three TPs 1-(2-
benzoic acid)-(1H, 3H)-quinazoline-2,4-dione (BaQD) (McDowell
et al., 2005; Azaïs et al., 2017), 1-(2-benzaldehyde)-(1H, 3H)-qui-
nazoline-2,4-dione (BQD) and 1-(2-benzoic acid)-4-hydro(1H, 3H)-
quinazoline-2-one (BaQM, Azaïs et al., 2017) with confidence level
2. The fragmentation spectra of the fourth TP with a suspect list
match could be equally well explained by in silico fragmentation
spectra of acridone and 9-hydroxy-acridine, which are tautomers
and have both been previously reported TPs of carbamazepine
(Kosjek et al., 2009a) (Supplementary Information 2.3).



Fig. 3. Left: molecular weight distribution of parent compounds (no treatment group) and TPs from ozonation and sand filtration. Right: Comparison molecular weight and RT of
parent compounds and their TPs. TPs detected in both carbamazepine labeled and unlabeled experiments are represented with filled dots.
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4. Discussion: suitability and performance of the developed
workflow

The developed workflow allowed monitoring of TP formation in
a lab-scale experiment. TP identification based on log2FC filters and
statistical significance between before and after treatment, and
spike-in and no spike samples was efficient in revealing an abun-
dance of drinking water treatment-specific TPs. Interestingly, an
absence of significant parent compound degradation could still be
accompanied by TP formation. The distinct isotopic pattern of
chlorine in metolachlor and clofibric acid samples, as well as the
2 Da mass shift of the label in carbamazepine experiments further
facilitated TP identification. Monitoring three different parent
compounds and two drinking water treatments in parallel allowed
to assess similarities and differences between their biotic and
abiotic TPs. Prior to the start of the lab-scale experiment, it was
known that carbamazepine readily reacted with ozone and was not
susceptible to biodegradation. Correspondingly, the majority of
carbamazepine TPs was formed during ozonation. However, sand
filtration did result in the formation of a small number of TPs,
which was surprising, but in line with previous research reporting
minor degradation of carbamazepine in laboratory scale experi-
ments (Duran-Alvarez et al., 2015; Dalahmeh et al., 2018), and the
isolation of bacterial strains able to biodegrade the pharmaceutical
(Bessa et al., 2017). Metolachlor formed one single biotic TP, which
was dehalogenated. Clofibric acid TPs, in contrast, were mainly
formed during sand filtration, and less than 5% contained a chlorine
atom. Dehalogenation thus seemed an ubiquitous process in the
biodegradation experiments performed, which is in line with
dehalogenation being a thermodynamically favorable reaction
(Parsons et al., 2008). In particular TPs formed by biodegradation
varied between experiments, performing experiments in dupli-
cates or triplicates would be more meaningful, but was logistically
not possible for the sand filtration set-up. Another significant dif-
ference between the two halogenated parent compounds metola-
chlor and clofibric acid was that 2/3 of the metolachlor ozonation
TPs still contained the chlorine atom, while only a single clofibric
acid TP did. The structural positioning of the chlorine atom strongly
influences its breakdown during ozonation experiments and thus
TP formation.
TP studies often include logical filters concerning molecular
weight and RT to identify TPs (Helbling et al., 2010; Escher and
Fenner, 2011); the hypothesis being that TPs are more polar than
their parent compound, and therefore elute earlier in RP-LC runs,
and that they are smaller than their parent compounds. However,
when the sand filtration and ozonation data sets were examined in
regards to molecular weight and RT distribution as illustrated in
Fig. 3, metolachlor was the only parent compound of which all TPs
had shorter RT, and molecular weight distribution of TPs spanned
from roughly 1/3 to 2x that of the parent compounds. Visual ex-
amination showed that the metolachlor sand filtration TP was
smaller than the mean ozonation TP. Accordingly statistical testing
showed that carbamazepine sand filtration TPs were significantly
smaller than ozonation TPs. However, the small number of sand
filtration TPs renders generalization difficult. Contrarily, for clofi-
bric acid an abundance of sand filtration TPs were identified, and
there was no significant difference between treatment groups.
These results emphasize that filters have to be carefully selected
when designing the data processing workflow. Application of a
logical filter for decreased molecular weight and shorter RT here
would have led to a substantial loss of identified TPs.
5. Conclusion: challenges of transformation product research
and outlook

Substantial advances in TP identification have occurred through
application of analytical methods combining so called “bottom-up”
and “top-down” approaches, i.e. the prediction of transformation
processes to create suspect lists with TPs of known parent com-
pounds that can be searched in non-target LC-HRMS data, and
statistical methods to identify patterns and similarities between
unknown parent compounds and their TPs. Here, the methods
developed and applied to a lab-scale experiment representing
relevant drinking water treatment technologies and parent com-
pounds allowed the detection of a multitude of TPs. However,
despite current advancements in the NTS based identification of
unknown compounds, the number of TP features remaining un-
identified exceeds the number of annotated features by far. This is
in particular due to the fact that TPs are often lacking from suspect
lists and spectral databases and thus represent so called “unknown
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unknowns”, as well as that reference standards for their confir-
mation are missing. The results of the lab-scale experiments
emphasize this issue, with only a minority of TPs matched to a
suspect, despite the effort spent on manually creating appropriate
suspect lists and the selection of 3 separately tested chemicals.
More comprehensive databases will likely alleviate this issue in the
future. In particular, STOFF-IDENT has increasingly been adding TPs
to its database. In addition, Schollee et al. suggested that based on
the relationship between structural and fragmentation similarity,
spectral similarity could be used to screen for organic micro-
pollutants and their TPs (Schollee et al., 2017). This approach could
thus allow identification of TPs that are unknown unknowns based
on MS2 fragmentation data. With these developments in mind, we
envision that the monitoring of TPs in drinking water could become
a routine task in water analyses leading to a more comprehensive
assessment of drinking water quality on the long run. Moreover, by
identifying TPs and connecting them to their parent compounds,
sources of contaminants and treatment processes could be deter-
mined and potentially regulated.
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