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Abstract

Limiting microbial growth during drinking water distribution is achieved either by maintaining a disinfectant
residual or through nutrient limitation without using a disinfectant. The impact of these contrasting approaches
on the drinking water microbiome is not systematically understood. We use genome-resolved metagenomics to
compare the structure, metabolic traits, and population genomes of drinking water microbiome samples from
bulk drinking water across multiple full-scale disinfected and non-disinfected drinking water systems. Microbial
communities cluster at the structural- and functional potential-level based on the presence/absence of a
disinfectant residual. Disinfectant residual alone explained 17 and 6.5% of the variance in structure and functional
potential of the drinking water microbiome, respectively, despite including multiple drinking water systems with
variable source waters and source water communities and treatment strategies. The drinking water microbiome is
structurally and functionally less diverse and variable across disinfected compared to non-disinfected systems. While
bacteria were the most abundant domain, archaea and eukaryota were more abundant in non-disinfected and
disinfected systems, respectively. Community-level differences in functional potential were driven by enrichment of
genes associated with carbon and nitrogen fixation in non-disinfected systems and γ-aminobutyrate metabolism in
disinfected systems likely associated with the recycling of amino acids. Genome-level analyses for a subset of
phylogenetically-related microorganisms suggests that disinfection selects for microorganisms capable of using fatty
acids, presumably from microbial decay products, via the glyoxylate cycle. Overall, we find that disinfection exhibits
systematic selective pressures on the drinking water microbiome and may select for microorganisms able to utilize
microbial decay products originating from disinfection-inactivated microorganisms.
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Introduction
Drinking water systems harbor diverse and complex mi-
crobial communities in bulk water, biofilms on pipe wall,
suspended solids, and in loose deposits [1–5]. While
treatment processes at the drinking water treatment
plants (DWTPs) shape the microbial community that
leaves the DWTP [6–9], multiple factors can influence
the structure and function of the drinking water

microbiome in the drinking water distribution systems
(DWDSs). These factors include, but are not limited to,
DWDS size, pipe materials and ages, water age within
the DWDS, and similar factors within premises plumb-
ing (PP) in buildings and homes [10–14]. Managing the
microbiological quality of drinking water during trans-
port through the DWDS and into the PP is essential for
the provision of safe drinking water. Unwanted microbial
growth and/or changes in the drinking water micro-
biome composition during transit through the DWDS
and PP are associated with several detrimental out-
comes. For instance, this could lead to proliferation of
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opportunistic pathogens [15–19] and eukaryotic mi-
crobes [14, 16, 20, 21], taste and odor issues [22], and
impact infrastructure via corrosion damage [23, 24].
Source-to-tap differences in drinking water systems

can range from source water type (e.g., surface, ground,
reuse water), process configurations at the DWTP, and
heterogeneity and condition of the DWDS and PP, yet
globally there are two fundamental approaches for man-
aging the drinking water microbiome during transport
to the consumer [25]. The first and most widely used ap-
proach involves maintenance of a disinfectant residual
(e.g., chlorine) in the DWDS. This is accomplished by
ensuring the water leaving the DWTP has a chlorine re-
sidual and/or by using booster stations in large complex
DWDSs to compensate for disinfectant residual decay
[26]. Disinfectant residuals counteract microbial growth
through inactivation, thus ensuring stable microbial con-
centrations during distribution. While disinfectant resid-
uals are effective in managing microbial growth in the
DWDS, there are some key issues associated with them.
These include esthetic and corrosion related problems
[25, 27, 28] but more importantly the formation of
harmful disinfection byproducts (DBPs) [29–31], which
are also regulated. Further, there is an increasing
recognition that the disinfectant residuals may be associ-
ated with selection of some opportunistic pathogens [16,
32] and antibiotic resistance genes (ARGs) in drinking
water [33–35].
The second approach for managing microbial growth

in the DWDS, primarily practiced in parts of Western
Europe (e.g., Netherlands, Denmark, and Switzerland),
involves distribution of drinking water without any dis-
infectant residuals [36]. These systems focus on minim-
izing nutrient availability in the DWDS to limit
microbial growth using high-quality source waters and/
or multi-barrier treatment. While some of these drinking
water systems may also use chlorine or other chlorine
compounds (e.g., chlorine dioxide) at the DWTP, they
ensure that chlorine is not detectable prior to distribu-
tion. The efficacy of this approach is supported by evi-
dence that incidences of microbial contamination and
associated waterborne illnesses are comparable to sys-
tems that maintain a disinfectant residual [25, 37]. This
suggests that with appropriate source water quality man-
agement, treatment, and well-maintained infrastructure,
drinking water can be safely distributed without disin-
fectant residuals [25].
Despite reports of comparable biological water quality

between systems with and without disinfectant residuals,
there are a limited number of studies that have system-
atically compared the microbial community between
these two types of systems. Bautista et al. [38] conducted
a meta-analyses study involving collation, curation, and
comparison of 16S rRNA gene amplicon sequencing

data from previously published datasets. While this study
was confounded by methodological differences between
datasets being used, the key conclusions were that pres-
ence/absence of disinfectant residuals impacts microbial
community structure and membership and that systems
without disinfectant residuals are more diverse than
their disinfected counterparts. Recently, Waak et al. [39]
compared biofilms between two drinking water systems,
one chloraminated systems and one without a disinfect-
ant residual. Consistent with previous findings, they ob-
served higher cell numbers and higher diversity in the
system without disinfectant residual, with higher propor-
tional abundance (proportion of total community) of
deleterious microbes (i.e., mycobacteria, nitrifiers, corro-
sion causing bacteria) in the chloraminated system. Both,
Bautista et al. [38] and Waak et al. [39] utilized gene-
targeted assays (i.e., 16S rRNA gene) to probe drinking
water microbiome composition and its differences.
While gene-targeted assays can provide valuable infor-
mation on microbial community structure and member-
ship information, they do not provide insight into
metabolic differences that may drive the observed differ-
ences in community structure. Further, gene-targeted as-
says can be limited by primer-bias and can result in
non-detection of microbial community members. Both
challenges can be overcome by utilizing metagenomics
which can provide insights into structure and functional
potential of microbial communities without being bias
against or towards specific community members. This
comes with the limitation that differences between sam-
ples/systems emerging from low-abundance microbes
may not be detected as this may require ultra-deep se-
quencing. Further, it is important to note that current
sequencing-based approaches (e.g., 16S rRNA gene
amplicon sequencing and metagenomics) only provide
relative abundance of taxa or genes which are inherently
compositional in nature. Although these microbiome
characterization approaches are powerful, they do not
capture quantitative differences between microbial com-
munities and this would require complimenting with
quantitative molecular assays (e.g., quantitative PCR).
We used metagenome analyses and genome-resolved

metagenomics to investigate the potential influence of
disinfectant residuals on the drinking water microbiomes
by comparing drinking water systems from the UK (with
disinfectant residual) and the Netherlands (without dis-
infectant residual). The goals of this study were (1) to
determine the extent to which disinfectant residual
shapes the structure and functional potential of the
drinking water microbiome, (2) to determine whether
the selective pressures of disinfection are conserved
across drinking water systems, and (3) to identify meta-
bolic pathways underpinning differences in structure
and functional potential of the drinking water
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microbiome. Addressing these questions across different
drinking water systems with inherent system-to-system
variability (e.g., source water, water chemistry, treatment
process) but one consistent difference—i.e., presence or
absence of disinfectant residual—will help highlight dis-
infection that are conserved and thus generalizable
across systems.

Results and discussion
Water quality parameters across disinfected and non-
disinfected DWDS
Sampling was conducted in seven DWDSs with disin-
fectant residual between April–August of 2013 and at
five DWDSs without disinfectant residual between
October–December 2015. The water chemistry varied
between the DWDSs considering they were supplied by
different DWTPs, our sampling campaign also captures
seasonal differences between locations (Fig. 1) (Table
S1). Specifically, water temperatures were higher (~ 5 °C)
for the disinfected samples compared to the non-
disinfected samples. While the pH, DO, nitrogen species
(i.e., ammonium and nitrate), and TOC measurements
were not significantly different between disinfected and
non-disinfected samples, the measured phosphate and
total chlorine concentrations were significantly different
(p < 0.05). Specifically, the average total chlorine con-
centrations in disinfected systems was 0.37 mg Cl2/l
(range 0.1–0.73 mg Cl2/l) while no disinfectant residuals
were measurable in the non-disinfected systems. The

average phosphate concentrations were 2.3 mg PO4
3−/l

while no phosphate was measurable in non-disinfected
samples. Phosphate was higher in the disinfected sys-
tems as it is likely to be used for corrosion control [40].
While we were unable to obtain information on source
water type (i.e., ground vs surface water) used for pro-
duction of drinking water supplied to the sampled
DWDS, conductivity measurements suggested DWDS in
both type systems were supplied by a DWTPs drawing
from surface and groundwater sources (Fig. 1).

Summary of metagenomic data set
Metagenomic analyses were used to assess the associ-
ation between presence/absence of disinfectant residual
with the structure and functional potential of the drink-
ing water microbiome. A total of 41 drinking water sam-
ples were collected from DWDSs (i.e., chlorine) from the
UK (n = 23), while those collected from the Netherlands
(n = 18) did not have a disinfectant residual. Quality
trimming of raw metagenomic data resulted in the re-
tention of 638 million paired-end reads. Co-assembly for
each drinking water system was carried out by combin-
ing reads from individual sampling location within each
drinking water system (Table 1). De novo co-assembly
generated 0.04–1.81 million true scaffolds for each
sampling location after discarding scaffolds shorter than
500 bp and contaminant scaffolds (Table 1) with an N50
value ranged from 775 to 3300 bp. The proportion of

Fig. 1 Summary of water chemistry parameters measured for samples collected from disinfected (purple) and non-disinfected systems (yellow).
b Principal component analyses using Euclidean distances for measured water chemistry parameters indicates distinct clustering of samples from
disinfected and non-disinfected systems
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quality-trimmed reads mapping back to true scaffolds
ranged from 67 to 99% (Table 1) across all samples.

Non-disinfected systems are more diverse than
disinfected systems
Non-disinfected systems were significantly (p< 0.0001)
more diverse compared to systems that maintained a
disinfectant residual (Fig. 2a) based on the Nonpareil
estimated diversity index [41]. This observation is
consistent with previous comparisons of bulk water [42]
and biofilm [39] samples from disinfected and non-
disinfected systems. Lower diversity in disinfected sys-
tems is likely due to stronger selective pressure of the
disinfectant residual as compared to that nutrient limita-
tion in non-disinfected systems. As a result of the higher
diversity in non-disinfected systems, the metagenomic
sequencing for these samples provided significantly
lower coverage of the sampled microbial community
(Fig. 2b) as compared to systems with a disinfectant re-
sidual (p < 0.0001).

Microbial community membership and structure is
different between disinfected and non-disinfected
systems
We used 2872 small-subunit (SSU) rRNA genes (2742
genes > 100 bp) identified on the assembled scaffolds to
determine community membership and structure across
sampling locations. While bacteria were dominant mem-
bers of the drinking water microbiome in both types of
systems (2C, 2D), the relative abundance of archaea and
eukaryota were dependent on the presence/absence of
disinfectant residual (Fig. 2c, e). Specifically, the relative
abundance of eukaryota was higher in disinfected sys-
tems as compared to non-disinfected system (2C), while

archaea were ubiquitous across non-disinfected samples
(Fig. 2c, e) they were only detected in a single disinfected
sample (D2). Non-disinfected systems were taxonomic-
ally more diverse, with respect to bacteria and archaea,
as compared to disinfected systems. Specifically, a total
of 14 bacterial and 6 archaeal phyla were detected in one
or more non-disinfected systems that were not detected
in any of the disinfected systems. Several of these unique
phyla, while not dominant in non-disinfected systems,
were detected at relative abundances between 1–5%
(e.g., Nitrospirae, Nanoarchaeota).
The bacterial community was dominated by

Proteobacteria, in particular Alphaproteobacteria and
Gammaproteobacteria, in both disinfected and non-
disinfected systems with Deltaproteobacteria being much
more prevalent and abundant in non-disinfected systems
(Fig. 2d). Actinobacteria were more abundant than
Proteobacteria in two drinking water systems and consti-
tuted 44% and 33% of the community in systems D4 and
ND1, respectively. Overall, the relative abundance of
Proteobacteria was higher in disinfected systems, ranging
from 28 to 90%, as compared to non-disinfected systems,
ranging from 30 to 57%. Patescibacteria was the second
most abundant phylum across non-disinfected systems,
constituting 15 to 29% of the SSU rRNA genes, while
they were only detected in one disinfected sample (D2)
with a relative abundance of 1%. Within Patescibacteria,
Parcubacteria were the most commonly detected phyla
followed by Microgenomatia and Gracilibacteria.
The observed differences between disinfected and

non-disinfected DWDS for bacteria and archaea are
largely consistent with previous meta-analyses of ampli-
con sequencing data from the 16S rRNA gene [42]. In
contrast to bacteria and archaea, results from eukaryotes,

Table 1 Sequencing and de novo co-assembly statistics for metagenomes from 12 drinking water systems

Drinking water
system

Paired-end reads
(millions)

Scaffolds
(> 500 bp)

True
scaffolds

True scaffold assembly
size (Mbp)

%
Mappedreads

GC
content
(%)

N50
(bp)

ORFs per
Mbp

Coding
density

D1 195.73 555493 546375 615.10 99.02 54.66 1131 1403.68 0.48

D2 46.87 38567 36733 53.03 96.24 55.34 2112 1419.84 0.64

D3 17.40 192457 190882 249.69 91.15 57.82 1531 1498.24 0.63

D4 36.01 123852 122486 204.78 93.03 57.57 3300 1316.54 0.60

D5 36.74 227196 225149 269.12 88.73 59.09 1313 1527.12 0.60

D6 17.39 42209 41459 57.23 95.89 59.16 1641 1504.23 0.65

D8 19.4 77973 76996 108.07 95.38 61.07 1751 1475.71 0.68

ND1 45.52 521371 517773 472.02 83.82 53.75 855 1803.21 0.61

ND2 25.98 363819 361304 316.18 75.03 53.44 802 1807.05 0.56

ND3 48.63 667992 663968 562.73 81.63 52.93 775 1838.06 0.60

ND4 17.78 164328 163361 143.22 66.73 56.48 808 1822.84 0.63

ND5 130.92 1812573 1804048 1834.75 93.74 56.38 1005 1672.04 0.60

D disinfected, ND non-disinfected, N50 minimum contig length that account for 50% of the bases, ORF open reading frame
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which have not been systematically investigated in the
drinking water microbiome, were surprising in terms of
their higher relative abundance eukaryotic in disinfected
as compared to non-disinfected systems. For instance,
SSU rRNA genes associated Nematoda were detected in
nearly every disinfected system, but were not detected in
non-disinfected systems. Specifically, SSU rRNA genes
from two free-living nematode genera, i.e., Araeolaimida
and Monhysterida, were detected in five of the eight dis-
infected systems. Similarly, SSU rRNA genes from the
phylum Rotifera were only detected in disinfected sys-
tems and were largely associated with the monogonont
rotifers within the genera Ploimida. While the relative
abundance of scaffolds determined to be of eukaryotic in
origin was higher in disinfected compared to non-
disinfected systems, this does not mean that eukaryotes

were proportionally larger part of the drinking water
microbiome in disinfected compared to the non-
disinfected systems. Genome sizes of picoeukaryotic mi-
crobes can be orders of magnitude larger than that of
bacteria and archaea and vary significantly between
picoeukaryotes themselves. Further, the higher overall
diversity and lower sequencing coverage (Fig. 1) could
also have resulted in under sampling of the eukaryotic
community in non-disinfected systems.

Drinking water systems cluster at the nucleotide level
based on presence/absence of disinfectant residuals
Samples (for read-based analyses) and drinking water
systems (for scaffold-based analyses) clustered with each
other based on the presence/absence of disinfectant re-
siduals (Fig. 3a, b) based on Mash distance estimates.

Fig. 2 Comparison of a diversity and b coverage between disinfected and non-disinfected drinking water systems estimated using Nonpareil. c
Comparison of relative abundance of bacterial, archaeal, and eukaryotic communities in drinking water systems with and without disinfectant
residuals. d Log10 transformed relative abundance of different phyla (classes for phylum Proteobacteria) across sampling location for the bacteria,
archaea, and eukaryota
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We further evaluated the significance and explanatory
power of measured water chemistry parameters in
explaining the observed clustering between disinfected
and non-disinfected systems. To do this, we initially per-
formed BioEnv analyses to identify water chemistry pa-
rameters and their combinations that were highly
correlated with observed Mash distances between sam-
ples (Table S2). This identified chlorine as being strongly
correlated with the Mash distances between samples (R
= 0.54, p < 0.001) while the maximum correlation be-
tween water chemistry and Mash distances was observed
for a combination of chlorine, phosphate, and TOC (R =
0.62, p < 0.001). We subsequently utilized dbRDA to in-
dependently determine the environmental/water chemis-
try variables most significantly associated with Mash
distances between samples. While chlorine was identi-
fied as a significant variable (p < 0.01), dbRDA identified

conductivity (p < 0.001) and DO (p < 0.01) as significant
variables (Table S3). Finally, variance partitioning ana-
lysis was used to determine the proportion of variance in
the Mash distance matrices explained by individual and
combination of variables identified as significant by
dbRDA (Table S4). This resulted in chlorine, conductiv-
ity, and DO individually explaining ~ 17%, 12%, and 1%
of the variance in the Mash distance matrix, with ~ 60%
of the variance unexplained by these three variables.
We further compared the distribution of Mash dis-

tances between drinking water metagenomes within dis-
infected, within non-disinfected, and between disinfected
and non-disinfected systems. Mash distances between
drinking water metagenomes from disinfected systems
were significantly different (p < 0.0001) and exhibited a
lower mean for disinfected as compared to non-
disinfected systems. Further, the pairwise Mash distances

Fig. 3 Comparison of nucleotide composition using paired reads each from each sample and true scaffolds in each drinking water system
according to Mash distance. a, b Heatmaps based on pairwise Mash distances of reads and scaffolds. Heatmaps are colored according to Mash
distance; yellow denotes a distance of 0. Labels on x- and y-axis are colored according to disinfection strategies. c MDS clustering of read-based
Mash distances between samples with vectors representing water chemistry/environmental parameters implemented using dbRDA. d, e Violin
plots indicating the distribution of pairwise Mash distances of reads and scaffolds. Plots are colored according to the system type for which
pairwise comparisons were conducted. Purple denotes comparisons between disinfected samples, yellow denotes comparisons between non-
disinfected samples, and green denotes comparisons between disinfected and non-disinfected samples. f Correlation between average Mash
distances of reads across samples and Mash distances of scaffolds across sampling locations
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between disinfected and non-disinfected systems were
significantly different and higher from those estimated
within each category (i.e., disinfected or non-
disinfected). This was consistent for both read- and
scaffold-based analyses (Fig. 3d, e). Finally, the average
pairwise Mash distances estimated using reads (i.e., be-
tween samples) and scaffolds (i.e., between DWDSs)
were highly correlated (Pearson’s R = 0.95, P < 0.05)
(Fig. 3c), indicating the de novo assembly process did
not result in loss of information on factors driving the
differences between disinfected and non-disinfected
systems.
These analyses provide a few key insights. First, Mash

distance-based (both read and scaffold based) clustering
of samples occurs depending on presence and absence
of disinfectant residual suggests that the microbial com-
munities are more similar within each group (i.e., disin-
fected and non-disinfected) and dissimilar between the
two groups (i.e., disinfected vs non-disinfected). Second,
while disinfected and non-disinfected samples cluster
distinctly from each other, disinfected systems exhibit
lower nucleotide-level heterogeneity as compared to
their non-disinfected systems indicating that the factors
governing microbial community in disinfected systems
likely impose stronger selective pressures on the micro-
bial community as compared to those in non-disinfected
systems. Third, non-disinfected systems exhibit greater
diversity not only within a system (Fig. 2) but also across
systems as compared to disinfected systems. Despite the
strong correlation between pairwise Mash distances of
reads and scaffolds (Fig. 3f), the median Mash distances
for pairwise comparison of samples within each type of
system (i.e., disinfected and non-disinfected) is higher
for the scaffold-based analyses as compared to the read-
based analyses. This is likely from the omission of low
abundance microorganisms during de novo assembly
and thus suggests that composition of medium-to-high
abundance organisms is likely to be more variable be-
tween non-disinfected systems as compared to disin-
fected systems.
Finally, while the water chemistry and environmental

parameters between disinfected and non-disinfected sys-
tems were distinct (Fig. 1b), the parameters that most
strongly correlated with Mash distances between sam-
ples were limited to a combination of chlorine, phos-
phate, and TOC for BioEnv analyses and chlorine,
conductivity, and DO based on dbRDA. Both independ-
ent exploratory analyses consistently identified chlorine
presence/absence and concentration as one of the key
drivers of the difference in microbial communities across
the samples. Further, variance partition analysis indi-
cated that ~ 17% of the variance in the Mash distance
matrix was driven exclusively by chlorine; this makes
chlorine the most important parameter measured as part

of this study in terms of differentiating between drinking
water metagenomes. The significance of phosphate de-
termined by BioEnv analyses is likely because chlorine
and phosphate concentrations are inherently associated
due to common use of the latter for corrosion control in
DWDSs that maintain a chlorine residual [40]. Further,
while it is unlikely that DO (identified as significant by
dbRDA) directly affects microbial community compos-
ition (all DO concentrations were near or greater than
saturation), it is possible that this may reflect the use of
advanced oxidation process (e.g., ozonation) during
drinking water treatment. Similarly, conductivity (identi-
fied as significant by dbRDA) is unlikely to directly influ-
ence the microbial community, but rather this may
reflect the source water type and treatment processes
being used for drinking water production. Specifically,
source water derived from groundwater sources or from
reservoirs under the influence of groundwater typically
have much higher conductivities than those that rely on
surface water supply. Similarly, chemicals used for soft-
ening and coagulation/flocculation processes may influ-
ence water conductivity. Thus, we speculate that the
influence of conductivity may serve as a surrogate for a
combination of source water and treatment process.
These analyses clearly identify chlorine as one of the
major measured parameters driving the Mash distances
between samples, followed by conductivity (a potential
surrogate for source water and treatment process).
Further, the fact that the major proportion of the vari-
ance remains unexplained suggests that additional as-
pects such as treatment process configuration, DWDS
characteristics, and other water chemistry parameters
which were not characterized/measured as part of this
study also likely play a strong role in differentiating be-
tween microbial communities in disinfected and non-
disinfected drinking water systems.

Protein coding sequences cluster based on the presence/
absence of disinfectant residuals
A total of 8 million protein coding sequences were pre-
dicted and translated from true scaffolds, of which ap-
proximately 17 to 27% were annotated against KEGG
database (Table S5). Consistent with the nucleotide-level
analyses, samples clustered based on the presence and
absence of disinfectant residual (Fig. 4a, b, c) rather than
by DWDS. Further, BioEnv analyses identified the com-
bination of chlorine, phosphate, and ammonia as being
strongly and significantly correlated (R = 0.392, p <
0.001) with Bray-Curtis distances between samples esti-
mated using abundance (i.e., RPKM) of KOs (Table S6).
Similar to nucleotide-based analyses, chlorine presence/
absence and concentration was the measured parameter
more strongly and significantly associated with differ-
ences in functional potential between samples at the
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single parameter level (R = 0.382, p < 0.001). In contrast
to nucleotide-based analyses, conductivity and chlorine
were the only two variables identified as significantly as-
sociated with Bray-Curtis distances between samples es-
timated using the relative abundance of KO’s in samples
using dbRDA (Table S7). Variance partitioning indicated
that both conductivity and chlorine individually ex-
plained approximately 6.5% of the variance in Bray-
Curtis distance matrix estimated using KO abundance
(Table S8). A comparison of the pairwise Mash distances
within each group (i.e., disinfected, non-disinfected) and
between them indicated that the diversity in functional
potential was significantly different for both predicted
protein coding-sequences and KEGG annotated proteins
(p < 0.0001). The median value of Mash distances be-
tween the non-disinfected samples was greater than that
for disinfected samples (Fig. 4d, e), and the differences

in Mash distances between the two groups was larger
than the distances within each group. And finally, des-
pite the fact that only 17–27% of predicted proteins were
annotated against the KEGG database, the Mash dis-
tances between metagenomes estimated using all pre-
dicted protein coding sequences and those that were
annotated against the KEGG database were highly corre-
lated (Pearson’s R≈ 1.00, p < 0.05) (Fig. 4f), suggesting
that focusing on annotated proteins does not result in
significant loss of information while performing direct
comparisons between samples from disinfected and non-
disinfected systems.
These analyses based on protein coding sequencing

provide several key insights. First, clustering of samples
into disinfected and non-disinfected groups is consistent
for both community composition (i.e., read-based nu-
cleotide composition analyses) and functional potential,

Fig. 4 Comparison of functional potential among all and KEGG protein-coding amino acid sequences across sampling locations. This analysis
estimates dissimilarity in amino acid composition of samples, similar to the nucleotide composition analyses presented earlier. a, b Heatmaps
based on pairwise Mash distances of all protein-coding sequences and Bray-Curtis distances using KO. Heatmaps are colored according to Mash/
Bray-Curtis distance; yellow denotes a distance of 0. Labels on x- and y-axis are colored according to disinfection strategies; dark golden denotes
samples with chlorine, while blue denotes samples without disinfectant residuals. c MDS clustering of using Bray-Curtis distances using KO
abundances between samples with vectors representing water chemistry/environmental parameters implemented using dbRDA. Violin plots
indicating the distribution of pairwise d Mash distances of all and e Bray-Curtis distances KEGG-annotated proteins. Crossbars indicate the median
value of Mash distances. f Correlation between pairwise Mash distances estimated using all and Bray-Curtis distances for KEGG-annotated protein
coding sequences
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irrespective of the use of all predicted ORF’s and KEGG
annotated protein sequences. Non-disinfected systems
are significantly more heterogeneous across systems as
compared to their disinfected counterparts. This sug-
gests that selection pressures exerted within disinfected
systems are not only evident at community structure/
membership (Fig. 3), but also evident at the community
functional potential level. Further, consistent with mi-
crobial community composition, chlorine was also iden-
tified as one of the key measured parameters driving
differences between samples based on functional poten-
tial using both BioEnv and dbRDA analyses. In contrast
to TOC which was included in the BioEnv parameter
combination for microbial community composition level
analyses, ammonia was identified as part of the combin-
ation at the functional potential level. While the exact
reason behind this difference cannot be ascertained in
this study, this may likely be associated with the fact that
non-disinfected systems are severely nitrogen limited as
compared to disinfected systems, while both types of
systems were likely not carbon limited (Table S1). Simi-
lar to the nucleotide level analyses, both conductivity
and chlorine were identified as significantly (p < 0.01)
associated with differences between samples, with vari-
ance partitioning analysis allocating an equal amount of
variation to both parameters (Table S8). As speculated
above, if conductivity is considered a signal for source
water and treatment process type, then the impact of
these two parameters on the functional potential of the
microbial community is relatively similar to that of pres-
ence/absence of the disinfectant residual. Finally, the re-
siduals from the variance partitioning analysis were
noticeably larger (84%) for functional potential analyses
as compared to the microbial community composition
(60%), suggesting that the impact of unmeasured/
uncharacterized factors/parameters on the microbial
community functional potential was significantly larger
than their impact on community composition. While it
cannot be ruled out, it is unlikely that the higher fraction
of unexplained variation was due to only a proportion of
ORFs being annotated; this is because Mash distances
estimated using only KEGG-annotated ORFs were highly
correlated with those estimated using all predicted ORFs
using suggesting little to minimal loss of discriminatory
power while using only annotated proteins.

Differentially abundant metabolic modules are consistent
with microbial growth control strategies
A total of 7281 KOs were identified in all samples with
5922 remaining post-filtering based on scaffold coverage
(> 1x) and frequency of KO detection in each drinking
water system (detected more than once). The 5922 KO’s
were further categorized into 540 KEGG modules and
upon further filtering to remove KEGG modules with no

more than one missing block and greater than equal to
50% completion, a total of 208 KEGG modules were
retained. Of these, a total of 57 KEGG modules exhib-
ited significantly differential abundance between disin-
fected and non-disinfected samples (p value < 0.005)
(Table S9, S10). Modules associated with ribosomal syn-
thesis, ribonucleotide biosynthesis, and RNA polymerase
were ignored from further consideration. Similarly, mod-
ules most likely associated with plant metabolism (e.g.,
Crassulacean acid metabolism) were also ignored. This
resulted in 29 and 22 KEGG modules that were more
abundant in non-disinfected system and disinfected sys-
tems, respectively. These included modules associated
with energy metabolism (disinfected, i.e., D = 2; non-
disinfected, i.e., ND = 5), carbohydrate and lipid metab-
olism (D = 11, ND = 10), nucleotide and amino acid me-
tabolism (D = 5, ND = 13), and secondary metabolism
(D = 4, ND = 1).
Metabolic modules associated with polyamine biosyn-

thesis, aromatics degradation, terpenoid biosynthesis,
and fatty acid metabolism were significantly enriched in
disinfected systems. Specifically, metabolic pathways as-
sociated with benzene (M00548) and benzoate (M00551)
degradation to catechol and methyl catechol were highly
enriched in disinfected systems. Further, eukaryota-
associated metabolic modules such as terpenoid back-
bone biosynthesis (M00367) and modules associated
with peroxisomal beta-oxidation of very long chain fatty
acids (M00861) are likely to be enriched in the disin-
fected systems due to the higher relative abundance of
eukaryota in samples collected from disinfected as com-
pared to non-disinfected systems respectively. Further,
modules related to γ-aminobutyrate (GABA) metabolism
(M00136, M00027) were enriched in disinfected systems.
The GABA shunt pathway converts glutamate to GABA
using glutamate decarboxylase (GAD), followed by the
reversible conversion from α-ketoglutarate to succinate
semialdehyde (SSA) through the activity of GABA trans-
aminase (GABA-AT), and finally succinate is formed by
succinate semialdehyde dehydrogenase (SSDH) activity.
In contrast, the key metabolic modules enriched in non-
disinfected systems were associated with carbon fixation
and methane metabolism (M00377, M00620, and
M00422) and nitrogen fixation (M00175) (Table S10).
The differentially abundant carbon fixation modules in-
cluded the Wood-Ljungdahl pathway, acetyl-CoA path-
way, and the incomplete reductive citrate cycle. These
pathways can fix carbon dioxide to produce acetyl-CoA
which can then be converted to other necessary biosyn-
thetic intermediates of the carbon metabolism [43, 44].
The enrichment of carbon and nitrogen fixation mod-

ules in non-disinfected systems is consistent with nutri-
ent limitation as the strategy for microbial growth
control in non-disinfected drinking water systems. While
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the measured total organic carbon concentrations in
non-disinfected systems did not indicate carbon-limited
conditions, DWTP’s supplying water to non-disinfected
DWDSs typically achieve far superior levels of removal
of assimilable organic carbon (AOC) [28]. Similarly, the
nitrogen availability in the form of ammonia was con-
sistently zero for non-disinfected systems compared to
disinfected systems which have residual ammonia con-
centrations ranged from 0.01–0.15 mg/l of ammonia-
nitrogen. In contrast, the enrichment of KEGG modules
associated with GABA metabolism in disinfected sys-
tems suggests the potential importance of stress protec-
tion and the utilization of microbial decay products.
Previous studies have shown that GABA metabolism is
associated with bacterial survival under various types of
environmental stresses, including oxidative stress, acidic
stress, and osmotic stress [45–48]. Meanwhile, GABA
can also play a significant role in the nitrogen metabol-
ism of bacteria. For instance, putrescine formed due to
the breakdown of amino acids potentially from decaying
biomass, can be converted to GABA (M00136) and

finally metabolized via the GABA shunt pathway [47].
The enrichment of GABA metabolism in disinfected sys-
tems may thus be associated with greater protection
against disinfectant stress and by allowing access to
decay products from inactivated cells.

Average genome size differences between disinfected
and non-disinfected system vary between read-based and
MAG-based analyses
We further investigated differences in genome sizes be-
tween disinfected and non-disinfected systems. Genome
sizes can be indicative of the metabolic capacity of mi-
croorganisms [49] and thus provide insights into
whether the presence/absence of disinfectants selects for
organisms with larger or smaller metabolic repertoire
[50] in comparison to organisms detected in non-
disinfected systems. Average genome size estimates from
disinfected systems were significantly larger than those
from non-disinfected systems based on MicrobeCensus
estimates using entire metagenomic data (Fig. 5a); this
was consistent even when reads mapping to phyla

Fig. 5 Violin plots indicating the genome size estimated by MicrobeCensus a before and b after Patescibacteria removal suggest average
genome sizes in disinfected systems are larger than those in non-disinfected systems. c The 115 MAGs assembled with > 50% completeness and
< 10% redundancy were categorized into d four groups based on their detection frequency in disinfected and non-disinfected systems. e While
the estimated genome sizes of MAGs in D-only, ND-only, and both categories were not significantly different, the ND-only category consisted of
large number of smaller genomes. f Bar plot indicating the proportion of reads mapped to 115 genomes across samples. Purple and yellow
denotes samples from systems with and without a disinfectant residual, respectively
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known to have smaller genomes (e.g., Patescibacteria)
were selectively removed from the data set (Fig. 5b).
This suggests that microorganisms in disinfected sys-
tems may be metabolically more diverse than their coun-
terparts from non-disinfected systems. Nonetheless,
these results were not consistent when compared with
estimated genome sizes of MAGs recovered as part of
this study. Specifically, we recovered a total of 115 dere-
plicated MAGs with completeness > 50% and redun-
dancy < 10% (Table S11). These 115 MAGS were binned
into four categories based on the detection or non-
detection in disinfected samples. Specifically, MAGs
were binned in the four groups (i.e., both, D-only, ND-
only, and other) based on genome coverage and detec-
tion frequency criteria outlined in the “Materials and
methods” section (see “MAG-level analyses” section).
This resulted in 9, 16, 41, and 49 MAGs categorized as
both, D-only, ND-only, and other (Fig. 5c, d) (Table
S11). In contrast to read-based estimates of average gen-
ome size, MAG-based genome size estimates were not
significantly different between the three key categories
(Both = 4.4 ± 0.77Mbp, D-only = 3.22 ± 0.81Mbp, ND-
only = 3.48 ± 1.22Mbp) (Fig. 5e). Yet, the ND-only cat-
egory consisted of several smaller genomes (n = 17)
compared to the D category. The lack of genome size
differences between disinfected and non-disinfected
samples based on MAG-based analyses compared to
metagenome-level read-based analyses may be due to
the proportion of read-based data represented by the
MAGs. Specifically, while 60–90% of the reads from dis-
infected systems mapped to the 115 MAGs with the
mapping rate from non-disinfected systems averaging
around 50% (Fig. 5f). Thus, it is likely that the metage-
nomic assembly and binning process may have resulted in
the suboptimal recovery of smaller genomes from non-
disinfected sample which eliminates the signal in genome
size differences observed at the metagenome level.

Metabolic capacities differ between metagenome
assembled genomes from disinfected and non-disinfected
systems
The clustering of MAGs (Fig. 6a) based on presence/ab-
sence of KEGG metabolic modules was largely driven by
phylogenetic placement of MAGs, rather than their clas-
sifications into groups based on the detection frequen-
cies in disinfected and non-disinfected systems (Fig. 6b).
Further, there was insufficient representation of MAGs
from D-only/ND-only categories across all phylogenetic
clusters (e.g., at the species or genus level) to allow for
direct comparisons of metabolic potential of closely re-
lated MAGs exclusively frequent in disinfected and non-
disinfected systems. Nonetheless, there were seven and
five high quality (completeness > 90%, redundancy <
10%) alphaproteobacterial MAGs that were exclusively

frequent in disinfected (average detection frequency in
disinfected = 55%) and non-disinfected systems (average
detection frequency in non-disinfected = 29%) (Fig. 6a).
Thus, we focused metabolic module comparisons be-
tween these 12 MAGs only. We evaluated differences in
metabolic capacity of these MAGs by (1) considering all
KEGG modules ≥ 75% complete within MAGs to be
present in them and (2) all modules present in more
than half of the high-quality MAGs within each category
to be present within each category (Fig. 6c, Table S12).
We subsequently confirmed the presence/absence of
genes within key metabolic modules using KO-level an-
notation for these 12 MAGs.
The metabolic module associated with the glyoxylate

cycle (M00012) was present in 86% of the MAGs in the
D-only category while being only partially complete in
most of the ND-only MAGs. Specifically, isocitrate lyase
(aceA: K01637) and malate synthase (aceB: K01638), two
key genes involved in the glyoxylate cycle, were present
in 40% and 100% of the MAGs from D-only, respectively
and both genes were absent in all ND-only MAGs in-
cluded in this analysis. The glyoxylate shunt is associated
with the use of non-carbohydrate carbon sources (i.e.,
via gluconeogenesis), such as break down products from
lipids, fatty acids etc. [51]. The likely benefit of the
glyoxylate shunt and associated use of lipids and fatty
acids as carbon source is further supported by the fact
that KEGG module associated with propionyl-coA me-
tabolism (M00741) was complete in 6/7 as compared to
2/5 MAGs from the D-only and ND-only categories.
This metabolic module is associated with the conversion
of propionyl-coA, a toxic byproduct of fatty and amino
acid degradation, to succinyl-coA. High biomass turn-
over rates, due to disinfectant-induced microbial inacti-
vation, may result in resource pools enriched in
microbial decay products thus allowing a significant ad-
vantage for microorganisms capable of necrotrophic
growth [52] aided by the glyoxylate cycle. Thus, it is
feasible that the ability to utilize microbial decay prod-
ucts may provide a distinct advantage to microorganisms
inhabiting disinfected DWDSs.
The glyoxylate shunt may provide additional benefits

for microorganisms subject to disinfectant stress via en-
hanced fitness to oxidative stress [51] and enhanced
persistence when challenged with other chemical
stressors (e.g., antibiotics) [53]. In contrast to module
level analyses at the metagenome level where carbon fix-
ation capacity was significantly more abundant in non-
disinfected as compared to disinfected systems, the
alphaproteobacterial MAGs from D-only systems
harbored the capacity for carbon fixation via the Calvin-
Benson-Bassham cycle (M00165, M00166, M00167)
while this capacity was mostly absent from MAGs in the
ND-only category. Nonetheless, these MAG-based
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analyses are limited in phylogenetic scope and do not
weigh the importance of MAGs to their respective sys-
tems based on their relative abundance. Hence, we sug-
gest that metagenome-level analyses should take
precedence over findings at the MAG level when they
conflict. While the glyoxylate shunt was not identified as
significantly enriched in the disinfected systems at the
metagenome level analyses, the GABA shunt (metagen-
ome level analyses) and glyoxylate shunt (MAG level
analyses) may both be involved in the use of non-
carbohydrate carbon sources suggesting that reuse of
microbial decay products may indeed be a key bacterial
trait that allows for persistence in disinfected drinking
water systems. Further lending support to this is that
that propionyl-coA metabolism was identified as signifi-
cantly enriched in disinfected systems compared to non-
disinfected systems using both metagenome-level and
MAG-level analyses. Interestingly, only one metabolic
module was identified as being more than twice as
prevalent in alphaproteobacterial MAGs from ND-only

systems compared to those from D-only systems (i.e.,
M00156: cbb3-type Cytochrome C oxidase). The greater
metabolic capacity of alphaproteobacterial D-only MAGs
compared to ND-only MAGs was also confirmed at the
KO-level by evaluating the presence/absence of KO’s in
the D-only and ND-only category MAGs. Specifically,
while only 8 KOs were twice or more as prevalent in
ND-only MAGs compared to D-only MAGs, the total
KOs that were twice or more as prevalent in D-only
MAGs was 109. This supports the conclusion that meta-
bolic repertoire of alphaproteobacterial D-only MAGs is
significantly larger than that of ND-only MAGs. Notable
among the genes that were twice as frequent in D-only
MAGs compared ND-only MAGs included those involve
in SOS-response-mediated mutagenesis involving trans-
lesion synthesis (i.e., imuA: K14160, imuB: K14161, and
dnaE2: K14162) [54], glyoxylate reductase (gyaR:
K00015) which may be likely involved in regulating
glyoxylate concentrations, and vitamin B12 transporter
(btuB: K16092). SOS response is typically activated in

Fig. 6 a Phylogenomic tree of 66 MAGs classified as D-only (purple circles), ND-only (yellow stars), and both (teal squares) constructed using 48 ribosomal
proteins along and their relative abundance (RPKM) in the samples collected from disinfected and non-disinfected systems. RPKM’s for MAGs are only reported
for samples where 25% of the nucleotides in a MAG were covered by at least one read. b Clustering of all MAGs based on their clustering metabolic potential
(i.e., completeness of KEGG modules) was primarily drive by phylogeny. c The metabolic modules identified as differentially abundant in disinfected systems
using metagenome level analyses are shown using teal arrows and squares and those more prevalent in high quality alphaproteobacterial MAGs from D-only
(purple arrows—a) compared to those from ND-only category (yellow arrows—a) are shown using blue arrows and boxes, while red arrows and boxes
indicate modules identified as more prevalent in D-only systems using both metagenome and MAG level analyses
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response to significant cellular accumulation of damaged
DNA [55] and imuA and imuB co-expression with
dnaE2 has been shown to be responsive to UV damage
[54]. Thus, the higher prevalence of SOS response-
related genes in D-only MAGs may be associated with
the DNA damage caused by disinfectants. Further, the
ability to synthesize vitamin B12, an essential co-factor,
is limited to certain bacteria and archaea and thus the
ability to uptake vitamin B12 from the environment is
essential for growth [56]. The higher abundance of vita-
min B12 transporters is consistent with metagenome
level observations that the microbial community in dis-
infected systems rely more on scavenging from the en-
vironment as compared to non-disinfected systems.

Conclusions
To our knowledge, this is the first study to provide
metagenomic insights into differences in structure and
functional potential of drinking water microbiomes
across full-scale drinking water systems that rely on dis-
infection (i.e., disinfected) or nutrient limitation (i.e.,
non-disinfected) to manage microbial growth. Under-
standing the microbial implications of these two micro-
bial growth control strategies is essential to not only
develop a better understanding of ecological and meta-
bolic traits guiding community level processes in these
system but is also critical for providing a community-
level context to the microbiological safety in either type
of drinking water system. In this study, we show that
disinfection exhibits consistent, systematic, and signifi-
cant association with drinking water microbiome at the
membership, structure, and functional potential at the
metagenome and MAG levels, irrespective of the drink-
ing water system under consideration (e.g., source water
type, treatment process, etc.). In doing so, we also iden-
tify key metabolic traits associated with carbon and ni-
trogen metabolism that are over represented in bacteria
in disinfected systems compared to non-disinfected sys-
tems. This suggests that the influence and efficacy of dis-
infection on the drinking water microbiome may not
simply be associated with differential disinfection resist-
ance [57], but may also expand to other metabolic traits
that include the use of carbon and nitrogen sources
made available via microbial inactivation and its
regulation.

Materials and methods
Sample collection and processing
Drinking water samples were collected from 12 drinking
water systems in the Netherlands (n = 5) between Octo-
ber to December 2013 (non-disinfected, i.e., ND) and
the UK (n = 7) between April to August in 2015 (disin-
fected, i.e., D) where chlorine was the residual disinfect-
ant. Samples were collected at two to four locations in

each DWDS which resulted in 23 D and 18 ND samples.
A total 15 L of water was filtered through three sterile
Sterivex filters with 0.22 μm pore size polyethersulfone
membrane (EMD MilliporeTM SVGP01050) using a
peristaltic pump (Watson-Marlow 323S/D) to harvest
microbial cells. Immediately after filtration, the mem-
branes were removed aseptically from the Sterivex cart-
ridge, cut into pieces and then transferred to Lysing
Matrix E tubes. The membranes were stored at 4 °C for
24 h or less before being transported to the laboratory
and stored at − 80 °C. Further details of sample
treatments and preservation are described in Sevillano-
Rivera et al. [35], along with detailed description of
chemical analyses. Briefly, Orion 5 Star Meter (Thermo
Fisher Scientific, Waltham, MA) was used to measure
temperature, pH, and conductivity, and dissolved oxy-
gen, while total chlorine and phosphate were determined
on-site using DR 2800 VIS Spectrophotometer (Hach
Lange, the UK) and EPA-approved HACH kits. Nitrogen
species were measured according to standard method,
4500-NH3-F for ammonia, 4500-NO2-B for nitrite, and
4500-NO3-B for nitrate respectively in laboratory [58],
while total organic carbon (TOC) was determined using
Shimadzu TOC-LCPH Analyzer (Shimadzu, Kyoto,
Japan).

DNA extractions
The total genomic DNA was extracted directly from fil-
ter membranes using Maxwell16 DNA extraction system
(Promega) and LEV DNA kit (AS1290, Promega,
Madison, WI, USA). The filters with collected biomass
in lysing matrix E tubes were incubated with 300 μL of
lysing buffer and 30 μL of Proteinase K and incubated at
56 °C. A total of 500 μL of chloroform:isoamyl alcohol
(24:1, pH 8.0) was added to the tube, vortexed and this
was followed by bead beating for 40 s at 6 m/s using a
FastPrep 24 instrument (MP Biomedicals, Santa Ana,
CA, USA), and centrifugation at 14,000g for 10 min. The
bead beating and centrifugation steps were repeated
twice more with transfer of supernatant to clean tube
followed by replacement of the aqueous phase with fresh
lysing buffer. The aqueous phase was then subject to
DNA purification using the Maxwell LEV DNA kit. The
extracted DNA was quantified using Qubit HS dsDNA
assay with Qubit 2.0 Fluorometer (Life Technologies,
UK). Negative controls consisting of reagent blanks (no
input material) and filter blanks (filter membranes from
unused Sterivex filters) were processed identically as the
samples for DNA extraction. Genomic DNA extracted
from mock community, consisting of 10 organisms, de-
tailed previously [35], was spiked into negative controls
extracted (n = 8) from the reagent and filter blanks.
These negative controls were also included in following
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library preparation and high-throughput sequencing (see
below).

Library preparation and Illumina sequencing
Sequencing libraries were prepared using the Nextera
XT DNA Sample Preparation Kit (Illumina Inc.). All
DNA extracts (including negative controls) were cleaned
up with HighPrep PCR magnetic beads (MagBio Inc.) to
remove short fragments after library preparation and
quantified with qPCR according to Illumina guidelines.
All libraries were pooled together in equimolar propor-
tion and pooled library was quantified with Qubit HS
dsDNA assay and further concentrated using HighPrep
PCR magnetic beads (MagBio Inc). Metagenomic se-
quencing on prepared libraries were performed on four
lanes of Illumina HiSEQ 2500 flow cell (2 × 250-bp read
length, Rapid Run Mode) at University of Liverpool
Centre for Genomic Research (Liverpool, UK).

Metagenomic read-based analyses
The FASTQ files were trimmed using Cutadapt v1.2.1
(Martin 2014) with a “-O 3” flag, and Sickle v1.200 (Joshi
and Fass 2011) using a threshold of window quality
score (≥ 20) and read length after trimming (≥ 10 bp). A
further trimming was applied using Trimmomatic v0.35
[59] to remove any remaining Illumina Nextera adaptors
and trim reads according to quality score with a 4-base
wide sliding window and a minimum average quality
score of 20 and singlet reads were excluded in down-
stream analyses as well. To estimate metagenome diver-
sity and coverage for each sample, Nonpareil 3.0 [41]
was used in kmer mode on the quality-filtered reads. Di-
versity and coverage information for each metagenome
was estimated using command “Nonpareil.set()” in R
package “Nonpareil”. MicrobeCensus [60] was used on
quality-trimmed reads to estimate average genome size
across samples with flag “-n 100000000” for all samples.
To eliminate the potential effects of bacteria with small
genomes (i.e., Patescibacteria) on average genome size
estimations, pre-processed reads were mapped against
12 Patescibacteria metagenome assembled genomes
(MAGs) from this study (see below) and 1037 Patesci-
bacteria genomes from GTDB-tk [61]. The reads
mapped in proper pair to Patescibacteria were removed
using samtools (“-F2” flag). MicrobeCensus was used
again to estimate average genome size using the same
parameters.

Metagenome assembly and mapping
Filtered pair-ended reads were then pooled from each
drinking water system for co-assembly, which resulted in
12 paired-end FASTQ files for co-assembly, including
seven from disinfected (Dis) and five from non-
disinfected (NonDis) systems. De novo co-assembly was

performed using MetaSPAdes v3.10.1 [62] with recom-
mended k-values for 2 × 250 bp reads (21,33,55,77,99,
127). All scaffolds shorter than 500 bp were discarded
and UniVec_Core build 10.0 (National Center for
Biotechnology Information 2016) was used for
contamination vector screening and any scaffold with a
significant hit to the UniVec database was removed.
Reads from each sample were then mapped back to the
filtered scaffolds using BWA-MEM v0.7.12 with default
settings [63].
To eliminate the scaffolds that may have originated

from sample or post-processing contamination, reads
from negative controls were first mapped back to mock
community genomes using BWA-MEM v0.7.12 [63],
and all reads not mapped in proper pair were extracted
using samtools v1.3.1 (Li et al. 2009) with “-f2” flag and
were considered “contaminant reads.” Sample reads (S),
contaminant reads (C), and negative control reads (NC)
were mapped back to filtered scaffolds in each co-
assembly. Properly-paired mapped reads were extracted
using samtools v1.3.1 with “-f2” flag from the BAM files.
Relative abundance and normalized coverage deviation
of each scaffold was calculated using reads from samples
and those identified as contaminant reads in negative
controls:

Relative abundanceS ¼ Scaffold coverageSPn
i¼1 Scaffold coverageS

Relative abundanceC ¼ Scaffold coverageCPn
i¼1 Scaffold coverageNC

Normalized coverage deviation

¼ Standard deviation of scaffold coverage
Average scaffold coverage

To distinguish true scaffolds from contamination, rela-
tive abundance (RA) and normalized coverage deviation
(NCD) estimated using sample reads (S) and contamin-
ant reads (C) were compared for all scaffolds:

Scaffold ¼
True scaffold; if

RAC ¼ 0
RAS > RAC and NCDS < NCDC

Contaminant scaffold; if
RAS ¼ 0

RAC > RAS and NCDC < NCDS

8
><

>:

True scaffolds, the scaffolds with higher RA and lower
NCD in samples compared to negative controls, were
kept for downstream analyses while contaminant scaf-
folds were excluded from all further analyses.

Nucleotide and protein composition analyses
MASH v1.1.1 [64] was used to estimate the dissimilarity
between samples using quality-filtered reads (with “-r”
and “-m 2” flags) and dissimilarity between drinking
water systems using true scaffolds with the sketch size of
100,000. Prodigal v2.6.3 [65] was used to identify open
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reading frames (ORFs) in the true scaffolds and translate
ORFs to protein-coding amino acid sequences. Follow-
ing prediction and translation, HMMER v3.1b2 [66] was
used to annotate ORFs against the Pfam database v31.0
[67] with a maximum e-value of 1e − 5 and curated bit
score thresholds (the gathering thresholds). Subse-
quently, MASH distances were calculated between
drinking water metagenomes using predicted ORFs, as
well as Pfam annotated proteins with the sketch size of
100,000 and “-a” flag.

Taxonomic classification and phylogenetic analyses
The program “cmsearch” was implemented in Infernal
v1.1.2 [68] to search scaffolds against SSU rRNA covari-
ance models (CMs) for bacteria, archaea, and eukaryota;
these are default models used by SSU-ALIGN v0.1 [69]
using HMM-only approach and only significant hits
were considered. The results were filtered according to
length (≥ 100 bp alignment) and e-value (<1e − 5). SSU
rRNA sequences detected in contaminant scaffolds were
removed and if more than one SSU gene sequence was
found on a single scaffold, only the longest SSU gene se-
quence was retained. Relative abundance of each SSU
gene sequence was calculated for each sampling location
as follows:

RPKMi
SSU ¼ Scaffold coveragei

Pn
i¼1 SSU containing Scaffold coverage per Mbi � Scaffold length per kbi

Relative abundanceiSSU ¼ RPKMi
SSUPn

i¼1 RPKM of scaffold containing SSU genei

SSU rRNA gene sequences were classified using
Mothur v1.33.3 (Schloss et al. 2009) with SILVA data-
base [70] (Release 132) with a minimum confidence
threshold of 80%.

Annotation and comparison of functional orthologies and
modules between samples
The protein-coding sequences were searched against
KOfam, a HMM profile database for KEGG orthology
[71] with predefined score thresholds using KofamScan
[72]. Only KEGG orthologies (KO) identified on scaf-
folds with (> 1x) coverage for each sample and those de-
tected more than once across samples within a single
drinking water system were retained for further analyses.
Average read count for each KO was calculated using
scaffold coverage, average length of reads mapped, and
total number of reads mapped to each scaffold in a sam-
ple using above equations. To assess functions at KEGG
module level, BRITE hierarchy file was retrieved from
KEGG website, and KO’s were categorized into KEGG
modules. The abundance of KEGG module in each sam-
ple was calculated using the median abundance of the
detected KEGG orthologies within each module. The

completeness of each KEGG module was calculated
using “KO2MODULEclusters2.py”.

Metagenome binning and refining
Anvi’o (versions: v2.2.2, v2.4.0, v4 and v5.1) [73] was
used for metagenome binning and refining. Briefly,
CONCOCT [74] integrated in Anvi’o was used to cluster
scaffolds (longer than 2500 bp) into metagenome bins
using tetra-nucleotide composition and coverage infor-
mation across all samples within each metagenomic co-
assembly. The “merge” method of CheckM v1.0.7 [75]
was used to identify the bins that may emerge from the
same microbial population but may have been separated
during automated binning process. Following merging of
compatible bins, RefineM v0.0.21 [76] was used to auto-
matically refine bins according to genomic properties
(i.e., the mean GC content, tetra-nucleotide signature,
and coverage) and taxonomic classification. The com-
pleteness and redundancy of each refined bin was es-
timated using CheckM based on collections of lineage
specific single-copy genes resulting in a total of 154
bins with greater than > 50% completeness. Among
these bins, 130 bins had a redundancy of < 10% re-
dundancy, while 24 bins are with > 10% redundancy.
Further manual curation of these bins was performed
using Anvi’o, resulting in 156 curated metagenome
assembled genomes (MAGs). The 156 MAGs were
de-replicated using dRep v2.2.2 [77] and MAGS with
> 10% redundancy were discarded which resulted in
115 dereplicated MAGs with completeness > 50% and
redundancy < 10%. All raw sequencing data and dere-
plicated MAGs are available on NCBI at BioProject
number PRJNA533545. The dereplicated MAGs are
also available in figshare at the following url: https://
doi.org/10.6084/m9.figshare.11833269.

MAG-level analyses
Taxonomy assignment of MAGs was performed using
GTDB-tk v0.1.3 [61] with the flag “classify_wf”. Genome
sizes of MAGs were estimated by multiplying the num-
ber of nucleotides in the MAG with the inverse of the
CheckM estimated completeness. The MAGs were an-
notated using the HMM profile database for KEGG
orthology with predefined score thresholds using
KofamScan [72]. The KO’s for each MAG were then cat-
egorized into modules based on BRITE hierarchy file re-
trieved from KEGG [71], and the completeness of KEGG
modules in each genome was calculated using script
“KO2MODULEclusters2.py”. Anvi’o was used to extract
a collection of 48 single-copy ribosomal proteins [78]
from each MAG using “anvi-get-sequences-for-hmm-
hits” with a maximum number of missing ribosomal
proteins of 40. Subsequently, a phylogenetic tree was re-
constructed using concatenated alignment of ribosomal
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proteins sequences using FastTree v2.1.7 [79]. Inter-
active Tree Of Life (iTOL) v4 (Letunic and Bork 2007)
was used to visualize the phylogenetic tree.
Program “Union” in EMBOSS v6.6.0.0 [80] was used

to concatenate all scaffolds in each MAG into a single
sequence. Reads from all samples were cross-mapped to
all MAGs using BWA-MEM v0.7.12 with default settings
and proportion of each nucleotide in MAG covered by
at least 1x coverage was determined using BEDtools
[81]. A MAG was considered detected in a sample if ≥
25% of its bases were covered by at least one read from
the corresponding sample. This approach was used to
determine whether MAGs were detected in all the sam-
ples. Further, the MAGs were binned into four categor-
ies based on their detection/non-detection within
samples. Specifically, MAGs were divided into “D-only”
if there were detected in ≥20% of the samples from the
disinfected systems and not detected in any samples
from the non-disinfected systems, “ND-only” if there
were detected in ≥ 20% of the samples from the non-
disinfected systems and not detected in any samples
from the disinfected systems, “both” if there were de-
tected in ≥ 20% of disinfected and non-disinfected sys-
tems, while the remaining MAGs were classified in the
“other” category. Subsequently, reads from all samples
were cross-mapped back to all the MAGs using BBMap
v38.24 [82] with a minimum identity of 90%, and “am-
biguous = best” and “pairedonly = t” flags. After filtering
for detection (see above), reads per kilobase of per mil-
lion reads (RPKM) for each MAG and each sample were
calculated using the equation:

RPKM ¼ Number of reads mapped to MAG
Total number of reads in sample per Million �MAG length in kbp

Statistics
Differences between disinfected and non-disinfected sys-
tems for (1) Mash distances distributions and (2) relative
abundances were determined using Permutational
ANOVA, and Pearson’s correlations between pairwise
mash distances were estimated in R. BioEnv in “sinkr”
(https://github.com/menugget/sinkr), and “vegan” [83]
packages were used to identify environmental parame-
ters (i.e., water chemistry) and their combinations that
explain the differences in the structure (i.e., Mash dis-
tances between samples estimated using reads) and func-
tional potential (i.e., Bray Curtis distance estimated
between samples using KO abundance (i.e., RPKM).
BioEnv permutes through 2^n−1 possible combination
of selected environmental parameters, 511 combinations
in this case, and selects the combinations of scaled en-
vironmental variables which capture maximum correl-
ation between dissimilarities of community datasets
water chemistry and microbial community structure or

functional potential. While, BioEnv analyses identified
combination of variables that are highly correlated with
differences in microbial community structure of func-
tional potential, it does not identify the proportion of
variance in microbial community structure of functional
potential explained by individual variables or their com-
bination. To this end, we used distance-based redun-
dancy analysis (dbRDA) to perform constrained
ordinations on community structure and functional po-
tential to bypass the limitation of usual RDA and CCA,
which can only use Euclidean distance measure.
Function dbrda() from “vegan” package was used with
pairwise Mash distances calculated between samples
estimated using reads based Mash distance and Bray-
Curtis distances based on KO RPKM to investigate
relationships between the environmental variables and
community data on both nucleotide composition and
KO level. The function varpart() in the vegan package
was used to determine the fraction of variation captured
parameters identified as significantly associated with
read-based Mash and KO relative abundance-based
Bray-Curtis distance matrices. DeSeq2 package v1.18.1
[84] was used to identify differentially abundant KEGG
modules between disinfected and non-disinfected sys-
tems by only considering KEGG modules with a max-
imum of one block missing and equal to or greater than
50% complete. The median scaffold-length normalized
read count of KO’s within each module was used in
DESeq2 analyses with a maximum adjusted p value of
0.005.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s40168-020-00813-0.

Additional file 1: Table S1. Summary of water quality parameters
measured for the samples collected as part of this study. (*NM = not
measured). Table S2. BioEnv analyses in vegan package to determine
the subset of variables significantly correlated with community
similarities. This determines the Spearman’s correlation between
Euclidean distances of scaled environmental variables with the Mash
distances estimated using metagenomic reads. Table S3. Distance based
Redundancy Analysis using Mash distance matrix generated using
pairwise Mash distances between samples estimated using metagenomic
reads. Table S4. Variance Partition analysis using water chemistry/
environmental parameters identified as significant being significantly
associated with read-based Mash distances by dbRDA analyses. Table
S5. Number of predicted open reading frames (ORFs) for each metagen-
ome co-assembly and number annotated against the KEGG database
using Kofamscan. Table S6. BioEnv analyses in vegan package to deter-
mine the subset of variables significantly correlated with similarities in
functional potential of community estimates using KEGG annotation. This
determines the Spearman’s correlation between Euclidean distances of
scaled environmental variables with Bray Curtis distance matrix generated
from RPKM of KO detected in samples. Table S7. Distance based Redun-
dancy Analysis using pairwise Bray-Curtis distances between samples esti-
mated using from RPKM of KO detected in samples. Table S8. Variance
Partition analysis using water chemistry/environmental parameters identi-
fied as significant being significantly associated with KO Bray-Curtis dis-
tance matrix by dbRDA analyses. Table S9. Summary of modules that
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were significantly higher abundance in disinfected systems as compared
to non-disinfected systems. Table S10. Summary of modules that were
significantly higher abundance in non-disinfected systems as compared
to disinfected systems.

Additional file 2: Table S11. Summary statistics for metagenome
assembled genomes (MAGs) extracted from the metagenome assemblies.
Metagenome assembled genomes (MAG) were finalized after
dereplication using dRep (https://github.com/MrOlm/drep) using all
MAGs assembled in this study. As a result, the name assigned to a MAG
does not represent sampling location it was assembled from. MAGs were
assigned taxonomy using the Genome taxonomy database (GTDBTK:
https://gtdb.ecogenomic.org/) version 0.1.3. The completeness and
redundancy of MAGs was estimated using CheckM (https://github.com/
Ecogenomics/CheckM/wiki) version 1.0.7. Only MAGs >50% completeness
and <10% redundancy were included in the study. The genome statistics
were estimated using Prokka. The coding density was estimated by
dividing the cumulative length of coding sequences (CDS) divided by the
length of the MAG. The MAGs were assigned four categories, "D-only",
"ND-only", "Both", and "Other". "D-only" was assigned to MAGs detected
in >20% of disinfected samples and not detected in non-disinfected sam-
ples. "ND-only" was assigned to MAGs detected in <20% of disinfected
samples and not detected of non-disinfected samples. "Both" was
assigned to MAGs that were detected in >20% of disinfected and non-
disinfected samples. "Other" was assigned to MAGs that did not fall in ei-
ther of the above three classes. (see excel spreadsheet).

Additional file 3: Table S12. KEGG modules and their completeness
estimates within each MAG assembled as part of this study.
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