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disinfection strategies, climate conditions, and source water types.
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1. INTRODUCTION

Several drinking water regulations (e.g, refs 1—3) include
parasitic eukaryotes such as Giardia lamblia and Cryptospori-
dium spp. among the microbial parameters of interest due to
their potential negative effects on human health.”> However,
compared to prokaryotes and especially bacteria, a few studies
have focused on the presence and the ecological role of
unicellular and multicellular eukaryotes within drinking water
distribution systems (DWDSs). These studies, employing
targeted approaches (e.g., internal transcribed spacer—ITS,
18S rRNA) and traditional culture-based methods, showed
that variations in the eukaryotic community in drinking water
systems are associated with water quality characteristics (e.g.,
organic carbon, nutrients), source water type, and disinfection
strategies.”” The presence of eukaryotes in drinking water
systems has been shown to affect other microorganisms, for
example, by shielding opportunistic pathogens from dis-
infection and altering biofilm properties through grazing® and
colonization.” In addition, eukaryotes have been linked to
operational issues, such as the increased presence of sediments
within DWDSs and consumer complaints.'’ For these reasons,
these microorganisms should not be ignored during DWDS
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management but, instead, should be included in the design of
ecologically-informed management practices. Leveraging
knowledge of the microbial ecology of the drinking water
microbiome could enable strategies to engineer drinking water
microbiomes to address current operational issues and
guarantee safe water at the consumers’ taps.''

Gene-targeted approaches (i.e, amplicon sequencing) have
been recently used to not only detect a vast diversity of
eukaryotes in drinking water systems but also to probe their
activity in different conditions.” These techniques have also
revealed the widespread presence of eukaryotic pathogens in
DWDSs, even in the presence of a disinfectant residual.'>"
However, amplicon sequencing approaches provide limited
ecological and physiological insights since these may not
permit fine-scale taxonomic resolution and do not provide any
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information on functional traits (e.g., trophic modes),'*"?

limiting their utility in devising ecologically-informed DWDS
management strategies. In addition, such insights could also be
impacted by several biases arising from polymerase chain
reaction (PCR) amplification, poor comparability of results
between different hypervariable regions, and variable small
subunit (SSU) rRNA gene copy numbers.'®"”

In contrast, shotgun DNA sequencing (ie, metagenomics)
alleviates these limitations by directly sequencing extracted
genetic material collected from the sample; this enables
genome and metabolic reconstruction of the detected
microorganisms,18 metabolic interaction inferences,’” and
potential guiding management strategies. However, this
comes with the drawback of reduced detection limits as
compared to amplicon sequencing approaches.”” Further,
metagenomic approaches can prove challenging when dealing
with complex genomes such as the eukaryotic ones, especially
for organisms with low relative abundances,”""** such as those
expected for DWDS eukaryotes. In addition, eukaryotic-
focused data analysis workflows are relatively less developed
compared with those targeting prokaryotes or viruses and no
extensive comparison among the different options has been
conducted, limiting their use to study the DWDS microbiome.

To advance the knowledge regarding eukaryotes in DWDSs,
this study (i) benchmarked several approaches for eukaryotic
sequence detection using synthetic metagenome constructs
and then (ii) applied the optimized eukaryotic sequence
detection workflow to publicly available DWDS metagenomes
to characterize the diversity and biogeography of eukaryotic
communities in drinking water. Specifically, we investigate (i)
experimental, environmental, and management (i.e., disinfec-
tion strategies) factors that may impact eukaryotic detection
and (iv) their associations with eukaryotes, prokaryotes, and
viruses.

2. MATERIALS AND METHODS

2.1. Bioinformatics Tool Benchmarking. 2.1.1. Data
Sources and In Silico Mock Metagenome Construction. The
eukaryotic and prokaryotic genomes used to benchmark
bioinformatics tools were downloaded from NCBI Genbank,**
RefSeq,”* and JGI Genome Portal.”> A data set was created
including 33 eukaryotic and 216 prokaryotic genomes (Table
S1). These genomes were selected after determining their
absence from training sets of the k-mer-based tools tested in
this study. To evaluate eukaryotic sequence identification tools,
test contig sets were created by extracting 100 randomly
selected sequences of lengths 1, 3, and S kbp from contigs
present in the downloaded genomes, similar to previous
studies.”* >’ Benchmark samples and assemblies for eukaryotic
sequence binning were obtained using CAMISIM v1.3.%
Specifically, 15 mock metagenomes were simulated using the
genomes from Table SI, followed by generation of three
metagenomic assemblies (five mock metagenomes per
assembly). While all parameters were kept as default, the
composition of relative genomes abundances in the different
samples was drawn from a lognormal distribution (4 = 1, ¢ =
2), imposing a ratio of total base pairs (bp) equal to 0.05
between prokaryotic and eukaryotic reads in all samples (Table
S2).

2.1.2. Benchmarking Workflows for the Identification of
Eukaryotic Sequences Using In Silico Mock Metagenomes.
EukRep v0.6.6,”° Tiara v1.0.2,” Whokaryote v0.0.1,*® and
DeepMicrobeFinder”® were used to identify eukaryotic contigs

3646

in the generated test contigs sets using k-mer-based
approaches. EukRep and Tiara were implemented using
three different thresholds varying from lenient to stricter
classifications. Majority voting identification (ties excluded)
was obtained by combining the results from EukRep, Tiara,
and Whokaryote, and, alternatively, Tiara, Whokaryote, and
DeepMicrobeFinder to test the complementarity of the
different tools. Sequences were also classified using Kaiju
v1.82°" (nr_euk database version: 2021-02-24) and CAT
v5.2.3°> (database version: 20210107), which rely on
Prodigal”®> and DIAMOND.** Finally, a hybrid strategy
combining the results of reference and k-mer-based approaches
was tested. This strategy identified eukaryotic contigs using
reference-based tools and then used k-mer-based character-
izations for contigs with no available reference-based
annotations. After the classification of each contig, the
sequences were randomly subsampled to achieve a eukaryotic
to prokaryotic bp ratio equal to 0.05, considered as a
representative ratio of the relative abundance of the two
superkingdoms in DWDS metagenomes™” to obtain perform-
ance estimates representative of real-world situations.”® To
properly account for both false positives and negatives in
imbalanced data sets,’® classification performances were
evaluated based on the Matthews correlation coeflicient
(MCC), precision, and recall using yardstick v1.1.0.>" The
subsampling was repeated 100 times, estimating the mean and
standard deviation of each performance metric. A flowchart of
the eukaryotic contigs identification benchmarking is shown in
Figure S1.

2.1.3. Benchmarking Workflows for Binning of Eukaryotic
Sequences Using In Silico Mock Metagenomes. The gold
standard assemblies generated by CAMISIM were classified
using a hybrid reference and k-mer-based strategy, imposing
minimum contig lengths for reference-based and k-mer-based
classifications equal to 1 and 3 kbp based on the findings from
classifier testing (see the results in Section 3.1.1), respectively.
Contigs were binned with CONCOCT v1.1.0,>® MetaBAT2
v2.15,%° SemiBin v0.7.0,"° and VAMB v3.0.2*" according to the
following strategies: (i) binning the full assemblies (FULL),
(ii) binning only the contigs classified as eukaryotic (EUK-
only), or (iii) binning contigs classified as eukaryotic and
unclassified contigs (OTHER-rem) (i, removing contigs
classified as prokaryotes or viruses). To include eukaryotic
taxonomic information in SemiBin, contigs’ taxonomic assign-
ment was performed using CAT. While all of the binners were
tested using default settings, MetaBAT2 was also run with the
minCV parameter equal to 0.1 and 0.33. Each strategy was
tested with minimum contig length cutoffs of 1, 1.5, and 3 kbp,
which corresponded respectively to the shortest default
minimum contig length, the minimum contig length accepted
by MetaBAT?2, and a value comparable to the longest default
minimum contig length. The binning quality was evaluated,
focusing on the bins with the majority of the bp derived from
eukaryotic genomes. Binning results were evaluated using
AMBER v2.0.3"> on (i) the percentage of eukaryotic bp
binned, (ii) the tradeoff between bin purity and completeness,
assessed through the F1 score, and (iii) the similarity between
the recovered bins and the original eukaryotic genomes,
measured through the adjusted rand index (ARI). A flowchart
of the procedure is presented in Figure S2.

2.2. Analysis of Publicly Available DWDS Metage-
nomes. 2.2.1. Data Sets Used. Metagenomes derived from
DWDSs were downloaded from NCBI using SRA Toolkit

https://doi.org/10.1021/acs.est.2c09010
Environ. Sci. Technol. 2023, 57, 3645—3660


https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c09010/suppl_file/es2c09010_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c09010/suppl_file/es2c09010_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c09010/suppl_file/es2c09010_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c09010/suppl_file/es2c09010_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c09010/suppl_file/es2c09010_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c09010/suppl_file/es2c09010_si_002.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c09010/suppl_file/es2c09010_si_002.xlsx
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.2c09010?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Environmental Science & Technology

pubs.acs.org/est

(@)

DeepMicrobeFinder EukRep Tiara
1.001 I====s======= ]
0.75 = = =~ e 1
__0504"" - :
I
= 0.251 1 1
O
o}
I T T T T T T T T T
c
2 Majority Majority
0] Whokaryote w/o w/o
o DeepMicrobeFinder EukRep
Q- 1.00- ]
8 0.75 1,27
E o
0.50 1 1
0.25 1 1
1 3 5 1 3 5 1 3 5
Minimum contigs length [kbp]
Stringency — Balanced/0.8 — Lenient/0.65 — Strict/0.95 Metric — mMcCC
— NA == Precision
= Recall
(b) (c)
Fraction of classified Fraction of classified Hybrid strategy
eukaryotic contig prokaryotic contig MCC
1.00 - 1.00+
0.75 1 0.751
o —
c L Tool
2 050 Q3 0501
§ s [ | Kalju
L
0.251 0.251
0.00 1 0.00 1

5 1
Contigs length [kbp]

Contlgs Iength [kbp]

Figure 1. (a) MCC, precision, and recall of tested k-mer-based strategies for eukaryotic identification. The stringency levels tested refer to
EukRep’s setting and Tiara’s probability threshold used, while NA indicates tools where stringency was not adjustable. (b) Fraction of eukaryotic
and prokaryotic contigs identified by reference-based tools and eukaryotic identification MCC. (c) Eukaryotic identification MCC of hybrid k-mer-
and reference-based strategies. Unitless axis metrics are marked as “[—]".

v2.9.6%

or, if deposited on MG-RAST,"" retrieved directly

from corresponding researchers for a total of 181 distinct
samples. Only samples derived from finished water at drinking
water treatment plants (DWTPs) and DWDSs were
considered, excluding those either collected in raw water,
within drinking water treatment plants, and DWDS biofilms.

Table S3 includes a list of the samples with the details
regarding experimental procedures used for each sam-
35,45-56
ple.
2.2.2. Bioinformatic Analyses. Raw reads from metage-
nomes were quality filtered and trimmed using fastp v0.20.1/

v0.23.2,% followed by vector contamination removal using the
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UniVec_Core database® and BWA-MEM v0.7.17 or BWA-
MEM2 v2.2.1,* SAMtools v1.9,> and bedtools v2.30.0. If a
sample was sequenced over multiple sequencing runs, then the
cleaned reads were merged into a single file. Cleaned reads
were then used to estimate the metagenome sequencing
coverage using Nonpareil v3.4.1°" and screened to identify the
number of read pairs properly mapping to the 16S or 18S
rRNA genes contained in SILVA database v138.1°> using
PhyloFlash v3.4°® and SAMtools.

Cleaned reads from samples collected within each
distribution system were coassembled using metaSPAdes
v3.10.1/v3.15.3°* after filtering for contigs greater than 1 kbp
by SeqKit v2.1.0.°° The coverage and depth of retained contigs
were determined using BWA-MEM2 and SAMtools. For
subsequent analyses, retained contigs were considered present
within a sample if at least 25% of the bases in the contigs had at
least one read mapping to them. In this way, the impact of
spurious mappings occurring across coassembled samples (e.g.,
due to highly conserved regions) is limited. Eukaryotic contigs
in metagenome assemblies were identified using EUKsemble
(see Section 3.1.1), a hybrid reference and k-mer-based
approach using contigs with minimum contig lengths of 1
and 3 kbp, respectively. The fractions of eukaryotic,
prokaryotic, viral, and unclassified contigs within a meta-
genome were estimated from the coverage information
previously estimated. To capture the diversity within each
group, the dissimilarity between the contigs present in each
sample was estimated by Mash v2.3% using 20,000 randomly
sampled contigs within each sample. For each group, Mash was
also used to estimate the f diversity across DWDSs. Before
diversity estimation, assemblies with fewer than 250 contigs
were removed, rarefying the remaining assemblies to an equal
number of contigs. The existence of significant presence-
absence based co-occurrence Gpatterns of 18S rRNA genes was
evaluated using CoNet v1.1.1°” and Cytoscape v3.9.1°° using a
hypergeometric distribution-based approach and a significance
threshold of 0.05. The obtained network was divided into
modules maximizing modularity usin_g the Leiden algorithm®
implemented in leidenbase v0.1.12.”° The 18S rRNA gene
sequence percentage identity of genes within each network
module was estimated using blastn as carried out by Wu and
collaborators.”!

2.2.3. Statistical Analyses. Statistical analyses were
conducted in R v4.2.1.”* Samples were clustered using the k-
means algorithm based on Nonpareil coverage and logit-
transformed eukaryotic bp fraction after the normalization of
the two variables. a diversity analyses of SSU rRNA genes were
performed using breakaway v4.7.6”° and DivNet v0.4.0”*
modeling the effect on samples of all of the categorical factors
(i.e, DWDS of origin and abundance cluster membership),
while the correlations among eukaryotic and prokaryotic or
viral B diversities were tested using a Mantel test, as
implemented in vegan v2.6-2.”> Linear mixed-effects models
from the Ime4 v1.1-29 package’® were used to evaluate the
differences in water quality characteristics among different
clusters using a random effect for accounting for the differences
among DWDS. Log transformations were used to correct for
residuals’ heteroscedasticity. For each rRNA genes module
identified with the network analysis, a hurdle negative binomial
model (package countreg v0.2-1"") was used to model the
number of 18S rRNA genes detected in each sample belonging
to the considered module as a function of the disinfection
strategy, the source water origin, and the Koppen climate
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zone’® to identify their effect on module detection (i.e., the
detection of at least one taxa belonging to the module) and the
number of members detected within each module.

3. RESULTS AND DISCUSSION

3.1. Bioinformatic Tool Benchmarking. 3.7.1. Eukary-
otic Identification. The majority of the sequenced data in
metagenomic assemblies from complex environmental samples
are typically contained in short contigs (e.g, <S5 kbp),
especially in the case of complex and highly diverse
communities with low abundance 0rgeinisms.21’7"80 However,
eukaryotic sequence identification tool benchmarks often focus
predominantly on longer contigs,”*™*’ potentially leading to
overestimating the tools’ performances in complex metage-
nomes. Eukaryotic sequence identification from metagenome
assemblies utilized either k-mer signature differences between
eukaryotes and prokaryotes or a comparison of unknown
sequences with reference databases. As described in previous
studies, the performance of k-mer-based strategies improves
with increasing contig length (Figure 1a). In our benchmark,
EukRep resulted in poorer performances compared to the
other tools due to the very liberal eukaryotic classification
regardless of the settings used, which is consistent with
previous results.”*”>* While this may ensure the recovery of
most eukaryotic sequences,”” this also might result in higher
contamination if a thorough contamination removal steg is not
performed. Instead, in contrast with recent reports,” Tiara
outperformed Whokaryote. This is because the distributions of
the gene structure metrics used by Whokaryote depend on
contig length, and they are, thus, not generalizable (Figure S3).
In fact, while the inclusion of such metrics alongside Tiara’s
predictions, as done by Whokaryote, leads to a more accurate
classification of long contigs,2 their inclusion with short
contigs is not effective, likely due to the presence of incomplete
and fragmented genes.

Compared to the other tools, DeepMicrobeFinder was
trained on short contigs (i.e., 0.5—5 kbp).*® This resulted in
relatively high MCC values at 1 kbp but led to only a limited
improvement with longer contigs, reaching a plateau of its
MCC value at 3 kbp (Figure 1a). As the various tools present
different strengths and weaknesses,”® we tested the perform-
ance of majority voting strategies (ties excluded) using either
the combination of EukRep, Whokaryote, and Tiara (Majority
w/o DeepMicrobeFinder) or DeepMicrobeFinder, Whokar-
yote, and Tiara (Majority w/o EukRep) against Tiara, the best-
performing single tool. The inclusion of EukRep alongside
Tiara and Whokaryote (i.e., Majority w/o DeepMicrobe-
Finder) resulted in lower performances compared to Tiara due
to the low precision of both EukRep and Whokaryote. Instead,
the use of DeepMicrobeFinder, Tiara, and Whokaryote (i.e.,
Majority w/o EukRep) resulted in MCC values approximately
3% greater than Tiara due to an increase in precision obtained
at the cost of a drop in recall. Noticeably, the larger MCC
improvement between 3 and S kbp obtained by Majority w/o
EukRep (8%) compared to Tiara (6%) suggests further
improvements over Tiara with longer contigs.

In addition to k-mer-based tools, two reference-based tools
were tested (Figure 1b). In contrast to k-mer-based
approaches, both Kaiju and CAT presented MCC values
above 0.99 for 1 kbp long contigs, in concordance with
previous benchmarks.”> However, this high MCC was
associated with the loss of large fractions of eukaryotic contigs
that were not classified, especially for shorter contigs; this was

https://doi.org/10.1021/acs.est.2c09010
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Figure 2. (a) Average and standard deviation of the fraction of eukaryotic bp binned and ARI obtained by the tested binners on the simulated
metagenomes. (b) Effect of the variation of the MetaBAT2’s parameter minCV on the percentage of eukaryotic bp binned and ARI. In both (a) and
(b), the size of the outer marker depicted in light gray represents the F1 score estimated using only the most complete bin per each eukaryotic
genome recovered, while the size of the inner marker represents the value including all generated bins.

likely because of the presence of incomplete fragmented
genes."’ We further tested the integration of the two
approaches to combine the ability to classify all sequences of
k-mer-based tools with the high-accuracy of reference-based
approaches. Such a hybrid strategy classifies contigs primarily
using reference-based predictions, resorting to k-mer-based
results if no reference-based annotation is available. The
integration of reference-based strategies with Majority w/o
EukRep improved overall performance compared to the use of
exclusive reference- or k-mer-based strategies, regardless of the
reference-based tool used (Figure 1c). In fact, CAT provided a
0.5% higher MCC value than Kaiju with 5 kbp long contigs,
while Kaiju resulted in a 1.3% higher MCC value with 1 kbp
contigs. This ensemble approach for the identification of
eukaryotic sequences from metagenomic data is documented
as a workflow, EUKsemble (https://github.com/mgabrielll/
EUKsemble). This workflow combines the results of Majority
w/o EukRep with Kaiju’s or CAT’s prediction to improve
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eukaryotic sequence retrieval from metagenomic assemblies.
As the combination between k-mer-based strategies and CAT
or Kaiju leads to similar results, the choice between the two is
left to the user, allowing the use of Kaiju in case if the available
computing resources are limited.”> Noticeably, to maximize
eukaryotic retrieval while minimizing false positives, different
minimum contig lengths for the two classification strategies
can be exploited. For instance, the chosen reference-based tool
could be applied to very short contig lengths (e.g, 1 kbp) to
retrieve with high confidence as many eukaryotic contigs as
possible, while Majority w/o EukRep could be used with
contigs longer than 3 kbp, the length at which such a strategy
provides satisfactory performance.

3.1.2. Recovering Eukaryotic Metagenome-Assembled
Genomes from Metagenomic Assemblies. Previously pub-
lished eukaryotic-targeted metagenome pipelines rely preva-
lently on MetaBAT2 or CONCOCT binning directly on the
whole metagenome or eukaryotic-screened contigs.">*”**
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Figure 3. (a) Fractions of eukaryotic, prokaryotic, viral, and not-classified (NA) bp in each of the analyzed metagenomes. EUKsemble results
refinement is based on the classification provided by Kaiju. (b) Association between the fraction of bp mapping to eukaryotic contigs and the mean
Mash distance between eukaryotic contigs in each sample as a function of the disinfection strategy employed. (c) Relationship between the
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However, currently, no direct comparison between the various
alternatives is present. Hence, we tested the performance of
several state-of-the-art binning tools on in silico mock
metagenomes either after the selection of eukaryotic contigs
(EUK-only) or directly on the whole metagenome (FULL)
using a range of minimum contig lengths. As eukaryotic
identification was performed using EUKsemble with different
minimum contig lengths for k-mer- and Kaiju-based identi-
fication (i.e., 3 and 1 kbp), we also tested the possibility of
performing binning with contigs identified as eukaryotic or
without any assigned superkingdom (OTHER-rem) after the
removal of only the contigs classified as noneukaryotic (i.e.,
prokaryotic, viral).
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Binning tools suffered inherently from a tradeoff between
the amount of assembled bp included in the recovered bins
and the binning quality (Figure 2a and Table S4), as reported
by similar benchmarks.*> Our results indicate that this is
observable both across different tools, minimum contig
lengths, and binning strategies (Figure 2a). CONCOCT
generally recruits the most eukaryotic bp into bins, while,
conversely, MetaBAT2 and VAMB maximize the ARI,
indicating higher quality of the reconstructed eukaryotic bins.
SemiBin performs poorly on both metrics. Increasing the
minimum contig length thresholds, on the one hand, improves
the bin quality for all binning tools (i.e., higher ARI values)
while coincidentally resulting in lower fractions of eukaryotic
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bp within bins. Direct binning of the entire metagenome allows
recovery of a higher fraction of eukaryotic bp present in the
metagenome but at the cost of a lower ARI as compared to
binning exclusively on contigs annotated as eukaryotic. The
limited eukaryotic recovery arises due to the limits of
reference-based eukaryotic identification, which do not classify
a large fraction of the eukaryotic contigs between 1 and 3 kbp
(Figure 1b). In contrast, excluding only the contigs classified as
noneukaryotic provided an increase in the ARI value for all
binners except for SemiBin and especially using CONCOCT
(average percentage increase: CONCOCT, 7%; MetaBAT2,
1%; VAMB, 1%) compared to binning the entire metagenome
while recovering up to 15% more bp than binning exclusively
contigs annotated as eukaryotic. The selection between
binning only the contigs identified as eukaryotic or including
also those nonclassified can depend on the acceptable level of
contamination of the recovered bins. Including nonclassified
contigs may require extensive curation (e.g, Delmont and
collaborators®*) as this practice can result in highly chimeric
bins including both eukaryotic and prokaryotic contigs (Figure
S4) that are likely to affect downstream results.

As MetaBAT?2 (with default settings) resulted in the highest
ARI, we tested whether it was possible to increase the recovery
of eukaryotic data by including contigs with low coverage
depths. Indeed, as shown in Figure 2b, reducing the value of
minCV, the parameter controlling the minimum coverage
depth admissible, increased the recovery, reaching values
comparable to CONCOCT. However, excessively low minCV
values (ie, 0.1) affected ARI values negatively, indicating the
value of 0.33 as a suitable lower bound. The need to adjust this
parameter does not require prior knowledge of the microbial
community analyzed but only a previous identification of
eukaryotic contigs and coverage depth estimation. The highest
average F1 scores of the most complete bin per recovered
genome were provided by MetaBAT2 with reduced minCV
parameter values and CONCOCT, followed by default
MetaBAT?2, SemiBin, and VAMB, mostly due to the variations
in completeness, as purity showed high average values (i..,
>0.9) (Table S4). However, when considering all of the
recovered bins, MetaBAT?2 led to the highest scores since the
other binners show high fragmentation of the initial genomes.
This fragmentation was not associated with the chromosomal
organization of eukaryotic genomes but rather due to the
combination of high k-mer diversity and low coverage depth
(Figure S5, Meyer and collaborators™'). Both the eukaryotic
identification and binning benchmark results highlight how the
length of the assembled contigs plays a significant role in
eukaryotic recovery from metagenomes. Even though a
systematic benchmark is needed, these results suggest
metaSPAdes coassembly as the most appropriate assembler
to recover eukaryotes from metagenomes, being known to
produce longer contigs than other assemblers and single-
sample assembly strategies.”*”*> As the DWDS microbiome
is largely unexplored, the results of these benchmarks will aid
future studies dedicated to the characterization of the
eukaryotic communities present in drinking water systems,
where issues linked to the low relative abundance of eukaryotes
are expected.

3.2. Factors Affecting Eukaryotic Relative Abundance
in DWDS Metagenomes. The eukaryotic fraction of DWDS
metagenomes was assessed on a total of 181 samples collected
from 81 DWDSs across the globe (Figure 3a) using
EUKsemble relying on Kaiju's reference-based approach.
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Even though a few studies showed particularly high fractions
of bp mapping to eukaryotic contigs, most DWDSs showed
fractions of eukaryotic bp below 1%. Such low amounts of
recovered bp, being in some cases shorter than the genome of
a single eukaryotic genome,86 are similar to previous
results”>>>*” and prevented MAG reconstruction. In fact,
despite the intensive eukaryotic identification procedure,
eukaryotic contigs presented, in most cases, lower fractions
than those mapping to viral contigs identified based on Kaiju’s
classification. Still, the retrieved eukaryotic percentages are
likely underestimated due to the limits of eukaryotic
identification and the exclusion of very short contigs (<1
kbp) because of their limited reliability in further analyses,
such as binning.** The presence of a good correlation between
the recovered eukaryotic bp and the 18S rRNA genes identified
suggests that our workflow is effective at recovering the
majority of the eukaryotic bp in the investigated metagenomes,
confirming the relative abundance trend observed for
eukaryotes (Figure S6). Future bioinformatics advancements
could, however, allow better recovery, further minimizing the
fraction of unclassified bp. Despite the possible confounding
effect caused by the heterogeneity within the data, higher
fractions of assembled and identified eukaryotic bp are
associated with higher eukaryotic diversity within samples,
especially in disinfected systems where most data is available
(Figure 3b; Spearman correlation disinfected systems, 0.48; p-
value, <0.001; nondisinfected systems, 0.3S; p-value, 0.081).
This result further suggests that eukaryotic populations are
systematically undersampled using current metagenomic
approaches and is in line with the trends for viruses recovered
in nondisinfected systems (Figure S7) while being in contrast
with prokaryotes for which the available data showed no
significant relationship between their bp fraction and their
diversity (Figure S8).

Besides the variability of eukaryotic relative abundances in
the investigated DWDSs, differences in the recovery of
eukaryotic DNA in metagenomes could be due to the different
experimental protocols used in the various studies (Table S3),
ranging from sample collection to sequencing strategies used.
Common filter size for microbial concentration ranges from
0.2 to 0.45 um and should not affect eukaryotic recovery.”
The eukaryotic metagenome fractions do not correlate with the
filtered water volume (p-value = 0.69) reported in correspond-
ing studies (Figure 3c), indicating that filtering a larger volume
of water does not improve eukaryotic recovery in meta-
genomes. Specifically, while filtering larger volumes may
increase the number of eukaryotic cells captured, their ratio
relative to prokaryotes and viruses will not change and thus
may not result in greater recovery of eukaryotic sequences in
metagenomes. DNA extraction prior to metagenomic analysis
can also affect the microbial community recovered using
metagenomic sequencing strategies.”””" However, as samples
taken from the same DWDSs were extracted using the same
extraction method per DWDS, it was not possible to assess the
effect of this factor. In any case, while commercial extraction
methods were shown to be able to successfully extract
eukaryotic DNA,”” specific processing techniques’* or the
use of dedicated enzymes” might further increase yields and/
or quality. However, the variety of eukaryotic phenotypes (e.g.,
soft-shelled, hard-shelled) exacerbates the extraction bias,
making it unlikely that a single optimal extraction method
could be developed.”® At last, the sequencing depth affects the
ability to recover rarer taxa.”” However, increased sequencing
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efforts did not lead to a significant increase in eukaryotic
fractions (p-value = 0.38) due to the confounding effect caused
by the different complexity of the microbial community in each
sample.” Indeed, irrespective of the actual sequencing depth,
better characterization of the microbial community, as
indicated by higher Nonpareil coverage,’' allows higher
eukaryotic fractions in metagenomes (Figure 3c), providing
evidence of the underestimation of eukaryotic presence in
DWDSs. Given this result, together with the fact that most
previous studies have focused on prokaryotes,” it is likely that
the role of eukaryotes in shaping the microbiome of drinking
water systems is currently underappreciated.

Despite exhibiting high Nonpareil coverages, some samples
show extremely low eukaryotic fractions, separating an
“eukaryotic-deficient” cluster from the “eukaryotic-increasing”
one (Figure S9); this includes samples originating from the
same DWDS splitting into these two clusters. The two clusters
show a significantly different composition with respect to
source water type (y* test, p-value <0.001), with the
eukaryotic-deficient cluster enriched in samples derived from
groundwater-fed systems (23%) compared to the eukaryotic-
increasing cluster (5%), suggesting higher eukaryotic relative
abundances in surface water-fed systems. This is in
concordance with what was previously observed in raw
waters.'”’ However, samples from surface water-fed DWDSs
were abundant in both clusters (eukaryotic-deficient cluster =
42.6%, eukaryotic-increasing cluster = 29.2%). Water dis-
infection is an important factor affecting the drinking water
microbiome.”>”” In fact, when comparing the total chlorine
concentrations in samples obtained from the same DWDS but
belonging to different clusters, eukaryotic-deficient samples
presented lower chlorine concentrations (95% confidence
interval, —195 to —29%; Figure 3d). Eukaryotes typically have
higher resistance to disinfectants compared to bacteria,”'*"'**
and thus, the higher chlorine concentrations present in samples
belonging to the eukaryotic-increasing cluster could have
altered the relative abundances, leading to a higher eukaryotic
DNA recovery in the metagenomes, similar to what was
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observed by Dai and collaborators.* In fact, higher chlorine
concentrations might limit prokaryotic growth within DWDSs
despite the presence of available nutrients'” and maintain
abundances similar to water treatment outlets. On the other
hand, several countries limit prokaryotic growth by reducing
the nutrients available (i.e., carbon, nitrogen, etc.) in finished
drinking water.'”® Indeed, several samples with low Nonpareil
coverages from nondisinfected systems are included in the
eukaryotic-increasing cluster, suggesting that limiting microbial
growth may be associated with enhanced eukaryotic detection
in metagenomes. This consideration, coupled with the results
presented in Figure 3d, highlights the importance and the
interaction of the multiple stresses (i.e., disinfection and
nutrient limitation) in shaping drinking water microbiology. In
fact, as such stresses are used to limit excessive microbial
growth, insights into their effects and interaction are critical for
DWDS microbiome management. Finally, samples belonging
to the eukaryotic-deficient cluster present lower average
estimated eukaryotic richness (p-value = 0.002) and non-
significant differences in Simpson and Shannon diversities (p-
values >0.28) compared to the samples belonging to the
eukaryotic-increasing cluster at similar Nonpareil coverages
(i.e, >0.75), indicating the presence of less diverse and more
even communities. Besides water sources and DWDS manage-
ment strategies, these observations could be associated with
other factors that could not be included in this study due to the
lack of this information. For example, water treatments, water
chemistry, and location within DWDSs have been shown not
just to affect prokaryotic but also eukaryotic abundan-
ces” %1% and should be the focus of targeted studies.

3.3. Factor Affecting Eukaryotic Diversity in DWDS
Metagenomes. As environmental factors and DWDS
management strategies affect the proportion of eukaryotes,
prokaryotes, and viruses in DWDS metagenomes, these factors
could also affect the taxa present and the diversity across
DWDSs. In fact, eukaryotic B diversity correlates positively
with those of both prokaryotes and viruses (Figure 4a,
eukaryotic—prokaryotic Mantel statistic r = 0.25, p-value =
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0.002; eukaryotic—viral Mantel statistic r = 0.21, p-value
0.014). While such low values are likely caused by the
heterogeneity of upstream treatments and water conditions in
the various studies, correlations among f diversities suggest
that spatiotemporal dynamics and factors that were found to
influence prokaryotes and viruses (e.g., disinfection strategies,
seasonality, water age),'”” are likely to be relevant also for
eukaryotes. Such concordance is likely the result of both direct
causes affecting both eukaryotes and other taxonomic groups
(e.g, upstream water treatment, nutrient availability, dis-
infection stress)”'** or could arise indirectly as a result of their
interactions. In fact, depending on environmental stresses (i.e.,
nutrient availability), furégi have been shown to modulate
bacterial growth levels,'”® while protists can both host and
eventually select specific prokaryotic symbionts and viruses,
favoring their multiplication,'®’~"%" and selectively predate on
them," """ highlighting the role of eukaryotes in shaping
microbiomes. In fact, specific eukaryotes could potentially be
used to develop ecologically-informed management strategies
relying, for example, on their predation of selected harmful
microorganisms112 or their alteration of biofilm structure,
minimizing biofouling." "’
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Through the analysis of the 18S and 16S rRNA genes, it was
possible to show a positive correlation between the estimated
eukaryotic and prokaryotic richness (Figure 4b; disinfected
systems = 0.5, p-value < 0.001; nondisinfected systems = 0.36,
p-value = 0.046). The presence of such a correlation, also
observed by Yeh and Fuhrman,"'* is concordant with the
“diversity begets diversity” hypothesis,""* likely arising due to
the interactions between populations across superkingdoms,’
which expand the availability of ecological niches and thus
enhance diversity. Figure 4a,b further underlines the effect of
disinfection on the DWDS microbiome, highlighting, in
accordance with Dai*® and Hegarty''® and collaborators, the
effect of disinfection strategies on the f diversity of prokaryotic
and viral communities in DWDSs and suggesting a lower effect
for eukaryotes (median Mash differences: eukaryotes = 0.021;
prokaryotes = 0.068; viruses = 0.043). While this result is
concordant with the higher chlorine resistance of eukar-
yotes,”' "% it should be noted that given the likely
undersampling of eukaryotic communities in DWDSs, such
result might be biased toward the most abundant eukaryotes
and that further dedicated studies would be needed to confirm
it.
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The presence-absence-based co-occurrence analyses of the
18S rRNA genes present in the samples was carried out to
obtain more insights into the eukaryotic communities in the
DWDS metagenomes. This approach was favored compared to
relative abundance-based co-occurrence analyses to limit the
confounding effects caused by the different experimental
protocols employed in the different studies. This network
analysis indicated the presence of 11 18S rRNA gene modules,
each composed of more than 10 eukaryotic taxa (Figure Sa).
The 18S rRNA gene sequence similarity analyses within each
module indicated that between 13 and 86% of the genes in
each module belong to taxa within the same order,”’ with
several members belonging to the same family or genus
(Figure Sb), as also observed in the cluster members’
taxonomy reported (Table SS). The variation in the ranges
of percentage identity distributions and the shape of the
density distributions suggest the presence in each module of
different groups of phylogenetically similar taxa with different
degrees of phylogenetic relatedness, possibly arising from
several evolutionary and ecological factors."'” It is important to
note that the co-occurrence patterns retrieved here do not
necessarily confirm ecological interactions''® and should be
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confirmed by further hypothesis-driven studies. This is
especially valid for phagotrophic organisms, while less so for
eukaryotes that can feed on other eukaryotes such as
nematodes.''” Noteworthily, nematodes make up most of
the nodes in modules 4, 7, and 9. While little information on
their diet in drinking water systems is available, some studies in
other environmental matrices report that certain species are
known to prey on the same, possibly eukaryotic, micro-
organisms (i.e., fungal-feeder Aphelenchoides spp., present in
module 4) or even other nematodes (ie., genus Mesodor-
ylaimus, present in module 4), possibly explaining the
associations found.''”'*® In addition, some of the co-
occurrences retrieved that involve parasitic nematodes are
possibly due to the infection of similar hosts, as the plant
parasites Longidorus spp. and Xiphinema spp."”" (both present
in module 4).

The detected association could be considered as groups of
eukaryotes that present similar responses to environmental and
DWDS management factors or even other (micro)biota. Such
interpretation is supported by the analysis, within each module,
of the number of members detected as a function of the
DWDS disinfection strategy, climate zone, and source water
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origin. Except for module 6, which did not show any significant
predictors (i.e., p-value < 0.05) of its detection or the number
of its members detected, all of the modules showed variations
due to the tested factors (Figure 6). While the higher
detections for some modules and module members in
disinfected systems might be due to the generically higher
Nonpareil coverage of samples derived from such systems,
noticeably, module 8 shows lower detection in disinfected
systems, indicating potentially the higher sensitivity of its
members to disinfection or the adaptation to low-nutrient
conditions of nondisinfected DWDSs. In fact, some nodes
included in module 8 represent fungi for which some sgecies
are known to proliferate under oligotrophic conditions'** and
demonstrate higher chlorine resistance than viruses and
prokaryotes but lower than protists cysts and oocysts.'*'**
In accordance with the expected climatic differences and
geographical distances among the two zones,” climate zone D
(ie., continental) showed, in most cases, differences in the
detection of the module members compared to zone A (ie.,
tropical). Finally, in accordance with the results of Section 3.2,
higher detection was observed in drinking water produced
from surface water for selected modules. For example, module
3 is composed mostly of Eustigmatophyceae, a lineage of
photosynthetic algae present in freshwater,'”* indicating the
possible role of the eukaryotes (and/or their genetic material)
in source waters in seeding downstream DWDSs. Besides the
factors taken into account in this analysis, it is important to
note that several other factors might have affected the
detection of modules and module members (e.g,, upstream
treatment, physicochemical water quality, degree of eukaryotic
community characterization). Future analyses considering such
parameters will shed further information on the factors
affecting the eukaryotes within DWDSs, opening new
opportunities for their management. Nonetheless, the results
provided can already help water utilities to assess which
eukaryotes are most likely to be present within their DWDSs
and, in case of the presence of microbial quality issues, plan
appropriate interventions.

4. IMPLICATIONS FOR FUTURE RESEARCH AND
DRINKING WATER SYSTEMS

The results of this study highlight the under-representation of
eukaryotes within current DWDS metagenomes. To accurately
determine the relative (or absolute) abundance of eukaryotes
and the membership and structure eukaryotic communities
within the drinking water microbiome, sampling protocols and
extraction methods should be adapted to enrich for eukaryotic
microorganisms, as already done in different fields surveys,
where sampling and laboratory techniques are tailored
depending on the microorganisms of interest. For example,
laboratory protocols used in the Tara Oceans Expedition were
either carefully selected among existing ones or specifically
developed to limit potential biases and ensure the quality and
comparability of the results.”* Furthermore, this expedition
applied a comprehensive sampling strategy that selected
different microorganisms using a size-fractionation approach
based on previously available data.'*> Finally, a wide set of
environmental conditions was also collected to aid data
interpretation.'”® In the drinking water field, a similar
standardized initiative was carried out in The Netherlands to
monitor macroscopic invertebrates using optimized sampling
techniques and microscopic techniques, >’ but it is not yet
widely adopted.
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Despite the recent growing attention, eukaryotic-focused
metagenomics is not as well established compared to the
prokaryotic or viral counterparts, with studies reporting its
complexity with current approaches.”” Likely, the combination
of multiple strategies, as done in EUKsemble, and the use of
novel approaches, such as dedicated assembly workflows and
the further exploitation of assembly graph information,'*®
would enable improvements in eukaryotic-focused metage-
nomics. For example, a novel pipeline for eukaryotic gene
calling combining several previous tools has shown improved
performances with respect to previous methods, allowing its
use for the analysis of large-scale data.'”” Given the importance
of contigs length on both eukaryotic identification and binning,
the use of accurate long-reads sequencing would likely be
highly beneficial for both these tasks, also providing the
opportunity to recover full-length 18S rRNA genes to populate
reference databases.'’’ Compared to prokaryotes and viruses,
both the reference data and the option of tools available for
eukaryotes are limited, further exacerbating the complexity of
the reconstruction of their genomes. In addition, due to the
wealth of data provided by marine expeditions, reference
databases included in several tools are highly skewed toward
marine taxa (e.g., Levy Karin and collaborators,®’ Vaulot and
collaborators'*"), potentially limiting and biasing the analyses
performed on other environments. While new tools will
improve the analysis of eukaryotes from mixed metagenomes,
only focused sampling efforts are needed to overcome the
compositional bias of current references and enable a clearer
view of eukaryotes in DWDSs.

Our results highlight that eukaryotes are present at low
relative abundances in DWDSs worldwide. While some of the
taxa found, including heterotrophic and mixotrophic micro-
organisms such as protists, fungi, and metazoan, are frequently
detected in DWDSs, others, such as strictly photosynthetic
algae, are likely to be present only due to their breakthrough
(or that of their genetic material) of upstream water
treatments, especially in the case of DWDSs fed by surface
water where relative eukaryotic abundance is higher. These
microorganisms, although unable to grow in DWDSs, can
represent a possible substrate source for the necrotrophic
growth of other eukaryotic and prokaryotic microorganisms, **
potentially limiting the effectiveness of substrate removal
efforts, and cause taste and odor issues.'® In fact, the presence
of both single and multicellular eukaryotes and the identified
positive diversity and richness correlations support the
presence of a complex food web within DWDSs where
eukaryotes could be both predators of prokaryotes and
viruses'' """ but also be prey of other eukaryotes'* or hosts
of other taxa.'”> As a result, besides direct management
strategies affecting all microorganisms and viruses in DWDS
(e.g., disinfection), management strategies targeting specific
taxa could indirectly affect other potentially detrimental taxa,
such as opportunistic pathogens,''” or impact unrelated
operational issues, such as water discoloration."’

A better understanding of the ecological role of eukaryotes
in DWDSs provided by both experimental and bioinformatic
advancements deepens our understanding of current micro-
biological management strategies in DWDSs (e.g., disinfection
and nutrient starvation). Such information could be used to
not only limit the presence of unwanted microorganisms (e.g.,
Cavallaro and collaborators''?) but also to devise new
ecologically informed microbiological management plans,
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improving both water treatment and distribution (e.g., Derlon
and collaborators''?).
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