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12 Abstract

13 Groundwater models are a valuable tool in optimising the decisions 
14 influencing groundwater flow. Spatially distributed models 
15 represent the groundwater level in the entire area from where 
16 essential information can be extracted, directly aiding in the 
17 decision-making process. However, these models are time-
18 consuming, limiting the number of scenarios that can be considered. 
19 This study explores different machine learning (ML) models as faster 
20 alternatives to predict the increase in steady-state groundwater 
21 head due to artificial recharge in the unconfined aquifer while 
22 considering a wider spatial extent (832 columns x 1472 rows 
23 totalling 765 km2) than previous ML groundwater models. We 
24 trained three ML models (encoder-decoder, U-Net, and attention U-
25 Net) with various hypothetical artificial recharge sites (100, 300, 
26 500, and 1000 sites) in the Baakse Beek catchment (the 
27 Netherlands), using a detailed numerical groundwater model, 
28 AMIGO. The applied recharge rate along with geo-hydrological 
29 properties from the AMIGO baseline run were used as inputs to the 
30 ML models. The properties’ permutation importance indicated that 
31 all properties of the first aquifer were important to predicting the 
32 response and were included when training the ML models. All three 
33 ML models improved with additional training sites but showed 
34 limited benefits from more than 500 recharge sites. Of the three ML 
35 models, U-Net and Attention U-Net outperformed the encoder-
36 decoder. These two models achieved Nash-Sutcliffe efficiency (NSE) 
37 of more than 0.8 when trained with 300 or more recharge sites. U-
38 Net trained on 1000 recharge sites had the highest overall NSE of 
39 0.95. U-Net better captures input features with highly variable 
40 spatial characteristics, such as rivers and drains which influence the 
41 maximum height of the groundwater response. The model captured 
42 the influence of the input features on the response, reproducing the 
43 response patterns across the entire catchment. Finally, we showed 
44 that the trained ML models are faster than the numerical model, 
45 predicting within 0.24 seconds (97th percentile), making it ideal for 
46 optimising decisions.
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51 1. Introduction

52 In the context of international policy frameworks like the European 
53 Water Framework Directive and Natura 2000, water management 
54 authorities have multiple targets they need to meet. The droughts 
55 of 2018-2020, which set a new benchmark in Europe (Rakovec et al., 
56 2022), increased the urgency to take appropriate measures 
57 (Bartholomeus et al., 2023). Although the events are considered 
58 rare in the current climate, future climate change could exacerbate 
59 such events (Aalbers et al., 2023; Balting et al., 2021; Lehner et al., 
60 2017; Pronk et al., 2021; van der Wiel et al., 2021). Even in deltas 
61 like the Netherlands droughts cause serious risks for nature, 
62 agriculture, infrastructure and drinking water availability, which 
63 resulted in drought-related policy actions like “Water and soil 
64 leading in land use planning” (Bartholomeus et al., 2023). One of the 
65 reasons for this vulnerability is the expansion of the surface 
66 drainage network and the increased exploitation of groundwater 
67 resources (Ahmadalipour et al., 2019; Bartholomeus et al., 2023; 
68 Castle et al., 2014; de Wit et al., 2022; Thatch et al., 2020; Thomas 
69 and Famiglietti, 2019; Witte et al., 2018). 

70 The Pleistocene uplands of the Netherlands have recently faced 
71 severe rainfall deficits (Brakkee et al., 2022; Philip et al., 2020), 
72 increasing the reliance on surface and groundwater for irrigation. 
73 This has increased the strain on the limited water available for 
74 nature (van den Eertwegh et al., 2020). Long-term structural 
75 changes are identified to be more effective at reducing the strain 
76 than reactive, ad-hoc remedies during droughts. Van den Eertwegh 
77 et al. 2020 recommend increasing freshwater availability through 
78 more sustainable drainage networks, reducing groundwater 
79 abstraction, and increasing groundwater recharge.

80 Managed aquifer recharge (MAR) can increase freshwater 
81 availability during dryer periods by storing water surplus from the 
82 wetter periods in the subsurface (Dillon et al., 2020, 2019; Hartog 
83 and Stuyfzand, 2017). It is often categorised into infiltration, direct 
84 injection, and filtration techniques (Casanova et al., 2016); we focus 
85 on infiltration techniques that recharge the water table from 
86 infiltration basins or subsurface infiltration systems, often making 
87 them the cheapest technique. However, water managers need to 
88 identify the optimal location, recharge rate and combination of the 
89 recharge sites when designing the solution which is often done using 
90 a numerical groundwater model. These models use a set of 
91 mathematical equations to estimate the flow of water within a grid 
92 that represents the hydrological system by their characteristics, such 
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93 as the aquifer's transmissivity, resistance and the surface drainage 
94 network. However, they are complex and simulating multiple 
95 scenarios for optimisation is time-consuming, limiting structured 
96 exploration and selection of potential recharge sites across an area. 
97 To facilitate the exploration of suitable recharge sites, there is a 
98 need for fast calculating tools to estimate the effect of managed 
99 aquifer recharge quickly. For such optimisation applications, a less 

100 accurate but faster option with interpretable results could be more 
101 suitable (Newman, 1996). 

102 Such an option could be a surrogate model, which is a simplified 
103 representation of a complex, higher-order model (Wang et al., 
104 2014). Reduced order models have been applied in groundwater 
105 modelling as surrogate models for their computational efficiency 
106 (Boyce et al., 2015; Dey and Dhar, 2020; Stanko et al., 2016; 
107 Vermeulen et al., 2004). Proper orthogonal decomposition, a 
108 common reduced-order modelling method, identifies the lower 
109 dimensional basis that captures the high-dimensional dynamics of 
110 the system. Vermeulen et al. (2004) have demonstrated its 
111 applicability in reproducing groundwater heads in a linear system. In 
112 a realistic case study, they achieved a relative mean absolute error 
113 of less than 6% while realising a 625x speed up. However, these 
114 attempts have been made for confined conditions with linear 
115 behaviour. Boyce et al. (2015) and Stanko et al. (2016) expanded 
116 this technique to unconfined aquifers, increasing the nonlinear 
117 behaviour due to the boundary conditions such as rivers. While 
118 more realistic, they are still limited to small synthetic systems with 
119 less than 200 by 200 cells. Furthermore, proper orthogonal 
120 decomposition models are limited to the location used to calculate 
121 the reduced space.

122 Machine learning (ML) has recently been a frequently used 
123 surrogate model as a universal function approximator. It can learn 
124 nonlinear relations in the data, which can be the results from 
125 existing numerical models. It has been used to reproduce models in 
126 fluid dynamics (Brunton et al., 2020), material science 
127 (Papadopoulos et al., 2018) and earth system models (Kim et al., 
128 2015; Weber et al., 2019), among others. Deep learning models 
129 have been used in groundwater modelling to forecast the head at 
130 wells (Malik and Bhagwat, 2021; Müller et al., 2021; Tao et al., 
131 2022). Asher et al. (2015) and Miro et al. (2021) recognised the lack 
132 of spatially distributed representation of groundwater surrogates. 
133 Since then, some authors have demonstrated the applicability of the 
134 convolutional encoder-decoder model, which satisfies this requisite 
135 (He et al., 2021; Mo et al., 2019; Taccari et al., 2022). However, 
136 these applications are also limited to small synthetic systems. 

137 Artificial groundwater recharge affects the groundwater head in a 
138 large spatial area. This entire spatial extent needs to be captured by 
139 the ML model. The applicability of the above ML models at 
140 reproducing the results from a numerical groundwater model with 
141 actual subsurface properties of an aquifer has not been 
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142 demonstrated yet. Furthermore, the ML model can be more 
143 specialised and represent the priorities of the optimisation 
144 challenge rather than a model reproducing all details of the system. 
145 We investigate the performance of three ML models for a 
146 catchment within the sandy uplands of the Netherlands and 
147 quantify the effect of artificial recharge for all possible locations 
148 within the area. The ML models' output is the increase in the steady-
149 state phreatic groundwater head, henceforth groundwater 
150 response, to applied recharge sites in the Baakse Beek catchment in 
151 the Netherlands. The hydrological properties and the results from a 
152 detailed numerical model (AMIGO) are used to train the ML models. 
153 The ML model is trained on the geo-hydrological properties of the 
154 first aquifer for a wider domain size of 1472 columns by 832 rows at 
155 a 25x25 m resolution representing a 765 km2 area. In doing so, we 
156 consider various combinations of geo-hydrological properties within 
157 the catchment and their impact on the performance of the 
158 surrogate model at predicting the steady-state groundwater head 
159 response to artificial recharge. These steps are further elaborated in 
160 the methodology and through the flow chart in Figure 1. The central 
161 questions this study aims to answer are:

162 1. Is the surrogate model able to reproduce the steady-state 
163 groundwater head response to artificial recharge with 
164 sufficient accuracy?  
165 2. Which physical characteristics are required to capture the 
166 steady-state response of the groundwater head to artificial 
167 recharge in a surrogate model trained on the results of a 
168 numerical model?
169 3. How much training data is needed to train the surrogate 
170 model to sufficient accuracy?

171 In addressing these questions, this paper aims to aid future 
172 modellers in designing more accurate ML models for scenario 
173 optimisations. These questions remain relevant even through the 
174 fast advancement in artificial intelligence and ML. Multiple geo-
175 hydrological properties represent the subsurface, but identifying the 
176 most relevant properties could help the ML model capture the 
177 relation between them and reduce overfitting. Furthermore, we 
178 want to minimize the number of slow numerical model runs. This 
179 paper compares the performance of the ML model when trained on 
180 datasets of various sizes. This offers an estimate of the number of 
181 scenarios needed to train the ML models and the effect of additional 
182 scenarios on the predicted groundwater response. Comparing three 
183 ML models with increasing complexity offers a more general view of 
184 answering the above questions and model complexity necessary to 
185 represent the relation between the recharge rate, hydrogeological 
186 properties and the groundwater response.

187 2. Methodology

188 The research methodology consists of two main parts: numerical 
189 modelling and machine learning modelling (Figure 1). The goal is to 
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190 use the numerical model to simulate a baseline steady-state 
191 scenario of natural recharge and steady-state scenarios with 
192 artificial recharge at sites across the study catchment. The 
193 difference in the groundwater heads between the artificial recharge 
194 scenarios and the baseline scenario is the groundwater response to 
195 the artificial recharge. A machine learning model is trained to 
196 reproduce this response. The rate of artificial recharge (5-25 
197 mm/day) and site size (0.01-1 km2) are selected randomly using 
198 Latin Hypercube Sampling to represent the entire range of potential 
199 recharge sites. Orthogonal Array-based Latin Hypercube Sampling is 
200 used to select the site location, within the model extent, as it 
201 samples the location more uniformly. 

202 The ML models are trained to reproduce the steady-state 
203 groundwater head response due to artificial recharge from the 
204 numerical groundwater model, AMIGO. These ML models are 
205 trained on training datasets of various artificial recharge 
206 realizations. Each realization contains six inputs from the AMIGO 
207 baseline run: (1) the artificial recharge rate, (2) baseline 
208 groundwater depth, (3) river stage and drain level relative to the 
209 baseline groundwater head, (4) river conductivity, (5) transmissivity 
210 of the first aquifer and (6) hydraulic resistance below the aquifer. 
211 The inputs were included based on their permutation importance in 
212 estimating three key characteristics of the steady-state groundwater 
213 head response to artificial recharge, namely the maximum, area, 
214 and total response. The ML model performance is also assessed on 
215 the same three key characteristics as they describe the most 
216 relevant properties of the response to optimize.

217 For steady-state simulations, the storage coefficient is zero by 
218 definition, thus not an input of the numerical model simulations, 
219 and therefore also not included in the inputs for the ML model. It 
220 should be noted, however, that in transient simulations the storage 
221 coefficient will be another system characteristic that importantly 
222 influences aquifer storage capacity to artificial recharge. 
223 Additionally, using the storage coefficient from a transient model 
224 lets us estimate the extra volume of water which can be stored by 
225 the artificial recharge, based on the simulated head differences.  

226 Three ML models are trained using the listed inputs: encoder-
227 decoder, U-Net and Attention U-Net, with increasing numbers of 
228 recharge sites: 100, 300, 500 and 1000. These models are designed 
229 to be increasingly complex, with the Attention U-Net having the 
230 highest number of parameters.
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231

232 Figure 1 Steps performed before training the machine learning models to reproduce 
233 the groundwater response to additional aquifer recharge. The groundwater 
234 response is the increase in the steady-state groundwater head in the scenarios with 
235 the artificial recharge over the baseline scenario. The scenarios were simulated 
236 using the numerical groundwater model AMIGO. We compared the importance of 
237 different geo-hydrological inputs, machine learning model architectures and the 
238 number of scenarios necessary to train the model.

239 2.1. Numerical Modelling

240 The ML model is designed to reproduce the steady-state response 
241 to additional artificial recharge in the Baakse Beek Catchment east 
242 of the Netherlands, as simulated by the AMIGO numerical 
243 groundwater model. The catchment drains an area of 262.5 km2 into 
244 the IJssel, a distributary of the river Rhine (Figure 2). This catchment 
245 is in the Netherlands' higher sandy region, insert in Figure 2, 
246 characterized by a 200m-thick sequence of Pleistocene sands 
247 intercalated with thin clay beds, which become thicker towards the 
248 west. It is mainly composed of coarse-textured glacial and beach 
249 deposits (Hijma, 2017; Sevink and Koopman, 2020), which are highly 
250 transmissive.
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251

252 Figure 2 Map of the study area, Baakse Beek catchment, in the sandy region of 
253 eastern Netherlands (the dark grey region in insert)

254 The Baakse Beek catchment is represented in the spatially 
255 distributed regional groundwater model AMIGO (Actueel Model 
256 Instrument Gelderland Oost v3.1) which covers the eastern region of 
257 the province of Gelderland. It is widely used by the regional water 
258 management authority Rijn en IJssel, province of Gelderland, 
259 drinking water companies, and consultancies. The model was 
260 calibrated and validated by its maintainers (Vreugdenhil, 2021). 
261 Within Baakse Beek, the maintainers determined the modelled 
262 average low groundwater level is 5 cm higher and the average high 
263 groundwater level is 22 cm lower than the observed levels in 2008-
264 2016. 

265 The AMIGO model consists of 15 layers, represented by their 
266 transmissivity and the hydraulic resistance between them at a 25m 
267 resolution. The hydraulic resistance is calculated as saturated 
268 thickness divided by the vertical hydraulic conductivity of the 
269 aquifers and the resistive layer between them. This model, which 
270 includes tile drainage, ditches, streams, and extraction wells, is 
271 implemented in iMOD (Vermeulen et al., 2021) for MODFLOW-2005 
272 (Harbaugh, 2005). In AMIGO, installed tile drainage are modelled 
273 using the DRN package in MODFLOW while ditches and streams are 
274 modelled with the RIV package. These two packages together 
275 represent the surface water network that drains the groundwater. 
276 To help the model capture the effect of the surface water network, 
277 the two packages are combined in a common input, referred to here 
278 as DRN and RIV. The AMIGO model was then cropped to a rectangle 
279 containing the Baakse Beek catchment. A fixed head boundary 
280 condition was defined along the edge of a rectangle surrounding the 
281 study catchment. The boundary is maintained at a distance of three 
282 times the leakage factor from the catchment's boundary to ensure 
283 that the boundary does not significantly influence the calculated 
284 response to recharge sites within the catchment. The groundwater 
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285 head from a steady-state run with long-term temporal average 
286 natural recharge is used as the model's initial and boundary 
287 conditions.

288 2.2. Machine learning models

289 General modelling task - The results from the numerical model 
290 scenarios are used to train a machine learning (ML) model using a 
291 surrogate modelling approach. In this approach, a surrogate model (
292 𝑓′) is used to approximate the results (𝑦) of a complex model (𝑓) by 
293 reproducing its outputs. However, in this study, the ML model 
294 predicts the difference between the results from a natural recharge 
295 scenario (𝑓𝑜) and the artificial recharge scenario (𝑓𝑠) (equation 2) 
296 rather than the complex model results directly (equation 1). This 
297 increases the relevance of the surrogate model to the scenario 
298 optimization task. Predicting the difference also reduces the output 
299 range, improving the training process for ML models.

300 𝑓′(𝑥𝑁∗
𝑥×𝐻×𝑊) ≈ 𝑓(𝑥𝑁𝑥×𝐻×𝑊) = 𝑦𝑁𝑦×𝐻×𝑊 (1)

301 𝑓′(𝑥𝑁∗
𝑥×𝐻×𝑊) ≈ 𝑓𝑠(𝑥𝑁𝑥×𝐻×𝑊) ― 𝑓𝑜(𝑥𝑁𝑥×𝐻×𝑊) = 𝑦𝑁𝑦×𝐻×𝑊 (2)

302 The spatially distributed models, like the AMIGO model, use 𝑁𝑥 
303 geohydrological features of size 𝐻 × 𝑊 to predict 𝑁𝑦 outputs. The 
304 ML model aims to estimate the same results based on fewer input 
305 features (𝑁∗

𝑥) than the numerical model. This reduction in input 
306 features helps train a more generalised and representative ML 
307 model (Kutz and Brunton, 2022). However, the model needs 
308 minimum input features to capture all relevant relations. The 
309 numerical groundwater model requires 105 two dimensional 
310 features, while the ML models reproduce the response based on 6 
311 input features.

312 Model architecture - Convolutional neural networks (CNN) (LeCun et 
313 al., 2015; Lecun et al., 1998), a popular ML model for image 
314 processing, are utilised in this study. These networks are especially 
315 suited for learning the local relations within the input features, 
316 which can influence the groundwater system in neighbouring grids. 
317 In the context of this paper, a feature is a measurable property that 
318 is input to the subsequent model layers. CNNs combine multiple 
319 layers to extract different features from the input, using trainable 
320 weight matrices (filters) that consider the surrounding cells of the 
321 cell of interest. Deeper layers in CNNs extract higher-order features, 
322 while initial layers extract elementary features. These higher-order 
323 features are crucial to capture interactions between the input 
324 features (Lerman et al., 2021). In addition to the layers with filters, 
325 CNNs also consist of convolutional, upsampling, batch normalisation 
326 (Ioffe and Szegedy, 2015), leaky ReLU (Maas et al., 2013) and 
327 dropout layers (Srivastava et al., 2014), which together enable 
328 learning nonlinear relations between the input features.
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329 This study compares three ML models: encoder-decoder, U-NET, 
330 and attention U-NET. The three models are based on an encoder-
331 decoder architecture. This architecture consists of encoder blocks 
332 (left block in Figure 3B) that learn the context in the input features 
333 and decoder blocks (right block in Figure 3B) that reconstruct the 
334 results from the learned context. The models differ in their encoder-
335 decoder architecture, with variations in the number of filters.

336 The three encoder-decoder models share the same set of 6 input 
337 features. The inputs are two-dimensional matrices, i.e. spatially 
338 distributed values, of artificial recharge rate, aquifer transmissivity, 
339 vertical hydraulic resistance, DRN and RIV conductance, DRN and 
340 RIV stage relative to the groundwater head of the baseline run and 
341 the depth to the groundwater head of the baseline run (Figure 3A). 
342 The features are selected to represent the groundwater flow within 
343 the phreatic aquifer, whose importance is confirmed based on 
344 permutation importance. These features are passed to the first 
345 down sampling block, which generates 32 features. The number of 
346 features is doubled by subsequent down sampling blocks, up to 128 
347 features. This limit was set to reduce the memory requirements for 
348 training the models. After the encoder block, a bottleneck (bottom 
349 Figure 3B) containing two convolution layers with 256 features was 
350 added, which improves the extent to where the recharge site 
351 influences the response. 

352 Following the bottleneck, five decoder blocks are used to 
353 reconstruct the output with decreasing numbers of features (128, 
354 128, 128, 64, and 32) in reverse order compared to the encoder 
355 blocks. The final up-sampling to the input dimensions was done 
356 using a convolution transpose and a convolution layer. The 
357 convolution transpose consists of 8 filters of size 4x4 with stride 2, 
358 while the convolution layer produces one feature with a 1x1 filter. 
359 Finally, a leaky ReLU activation function is applied to scale back 
360 negative values and better represent the output. 

361 Encoder - The encoder block learns context with five down sampling 
362 blocks (left half of Figure 3B). Each block reduces the input's height 
363 and width by half using convolutional layers of 5x5 filters and a 
364 stride of two and zero padding. These layers are followed by batch 
365 normalisation, leaky ReLU activation, and a dropout rate of 10%. The 
366 batch normalisation layer normalises the features with a mean of 0 
367 and a unit standard deviation. The dropout layer replaces a random 
368 subset of the features with 0 during each iteration of the training 
369 process, hiding those features and reducing overfitting. The leaky 
370 ReLU activation introduces non-linearity to the model by scaling 
371 negative values with a slope of 0.2. It is preferred over ReLU, which 
372 only considers positive values, to avoid the 'dying ReLU problem' 
373 due to which the model weights do not update through gradient 
374 descent. The learned features in the encoder are then passed to the 
375 decoder, which recreates the response based on the learned 
376 context.
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377 Decoder - The decoder block increases the dimension of the features 
378 back to that of the input through five upsampling blocks (right half 
379 of Figure 3B). The three models differ in their decoders. The 
380 simplest of the models is the encoder-decoder, where each 
381 upsampling block consists of a convolutional layer followed by 
382 bilinear upsampling, leaky ReLU activation (slope 0.2), batch 
383 normalisation, and dropout (rate 10%). The convolutional layer uses 
384 5x5 filters, a stride of 1, and zero padding.

385 U-Net trains on higher-level features directly from the encoder and 
386 context from the deepest part of the network through skip 
387 connections. These connections join the feature from the encoder 
388 with upsampled features from deeper parts of the network. The 
389 combined features are then processed by convolutional layers, 
390 batch normalisation, leaky ReLU activation, and dropout layers like 
391 in the encoder-decoder.

392 The upsampling blocks in Attention U-Net (Oktay et al., 2018) are 
393 similar to that in U-NET. However, it learns to focus on specific 
394 regions in the higher-level features using an attention block. 
395 Information is extracted from the two sources of features, 
396 upsampled contextual features and the higher-level features, using 
397 convolutional layers with 3x3 filters, a stride of 1 and zero padding. 
398 Additive importance is then calculated based on the information 
399 learnt from the two features, and non-linearity is added to the 
400 importance with ReLU activation. From these, a single importance 
401 weightage is calculated using a convolution layer with a 1x1 filter 
402 and stride one and sigmoid activation, which scales the importance 
403 between 0 and 1. The detailed features are multiplied with 
404 corresponding weights to enhance the relevance of important 
405 regions and they are then concatenated with the upsampled 
406 contextual feature. This concatenated feature is then passed 
407 through the convolutional layers, leaky ReLU activation, batch 
408 normalisation, and dropout layers, similar to the previous models. 
409 Note that the attention U-Net has half the number of filters as the 
410 other two models to stay within the memory limits.

411 Custom loss function - The models utilised in this study employ a 
412 type of machine learning called supervised learning (Bishop, 2006), 
413 which aims to learn a mapping between inputs and outputs based 
414 on labelled examples. Specifically, the ML model outputs are 
415 compared to groundwater response from the numerical model, 
416 AMIGO. The model's performance is evaluated using a loss function 
417 such as mean squared error (MSE) to update the model parameters 
418 through gradient descent. The training procedure is monitored by 
419 tracking the ML model's performance on a validation dataset, which 
420 is concluded when the loss does not improve through the training 
421 iterations. This validation dataset consists of the AMIGO simulation 
422 results from 100 recharge sites that the ML model was not trained 
423 on.
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424 ℒ𝑀𝑆𝐸 = 1
𝑁∗𝛴(𝑦 ― 𝑦)2    (3)

425 ℒ = (1 ― 𝛼) ∗ 𝑀𝑆𝐸0 + (𝛼) ∗ 𝑀𝑆𝐸𝑟 (4)

426 The loss function was modified to help make it more suitable for the 
427 task. The target variable from AMIGO is sparse, consisting of 
428 multiple cells with no groundwater response, which can lead to the 
429 model primarily predicting zeros. The dying ReLU problem (Lu et al., 
430 2020) further exacerbates this problem. To address this, the mean 
431 squared error loss (ℒ𝑀𝑆𝐸 in Eq 3) was split into two components in 
432 Eq 4: MSE for predictions where there is no response to the applied 
433 artificial recharge (𝑀𝑆𝐸0), and MSE for predictions of the response (
434 𝑀𝑆𝐸𝑟). In Eq 3, 𝑦 and 𝑦 are the groundwater response from AMIGO 
435 and the ML model respectively, while 𝑁∗ is the number of input sites 
436 in the iteration. The final loss (ℒ) is a weighted sum of these two 
437 components, controlled by a hyperparameter 𝛼 (Eq 4). This loss 
438 function offers several advantages: it balances the error between 
439 the overrepresented zeros and the response, unlike a mask, it is still 
440 sensitive to predictions away from the site, and the tuneable 
441 parameter 𝛼 allows the relative importance of the two components 
442 to be adjusted to reflect the priorities of the use case.

443 Based on this loss, the ML model parameters were iteratively 
444 updated using the ADAM optimiser (Kingma and Ba, 2014), with a 
445 learning rate schedule. Each iteration consisted of 8 recharge sites 
446 (batch size = 8). The initial learning rate was set to 0.002, which was 
447 halved if the loss did not improve over five iterations. The training 
448 was continued until the loss did not decrease for ten consecutive 
449 iterations (Figure 3), reducing the training time compared to relying 
450 on the default reduction in the learning rate used by ADAM.

451

452 Figure 3 The training process of the machine learning (ML) models. (a) The ML 
453 model is trained on the five features from AMIGO with the recharge rate we want to 
454 predict the groundwater response. (b) The ML models are based on the encoder 
455 decoder architecture. Two variants of U-NET have skip connections from the 
456 encoder directly to the decoder represented by the dashed line. The model weights 
457 are iteratively updated during training using the ADAM optimiser to a minimise loss. 
458 This loss is based on the mean squared error (MSE) between the (c) ML model 
459 predictions and those from the numerical model AMIGO. The training iterations are 
460 concluded when the loss does not reduce on an unseen validation set for ten 
461 iterations. Basemap from OpenStreetMap-carto.
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462 2.3. Training the model

463 Inputs to the ML models - The relative significance of the phreatic 
464 aquifer's properties was evaluated using the permutation 
465 importance approach (Altmann et al., 2010). This method estimates 
466 the significance by evaluating the increase in error that occurs after 
467 permuting that property. This method was used to compare the 
468 importance of the five phreatic aquifer properties and eliminate 
469 irrelevant ones. The compared properties are: transmissivity, 
470 hydraulic resistance below the aquifer, DRN and RIV conductance, 
471 DRN and RIV stage relative to the groundwater head in the baseline 
472 scenario, and the ground height relative to the groundwater head in 
473 the baseline scenario. These properties are two dimensional and 
474 need to be summarised as tabular features before estimating their 
475 importance. Four tabular features are calculated from each 2D 
476 feature which are: (1) mean, (2) minimum, and (3) maximum values 
477 where the steady-state groundwater response was more than 1 cm 
478 and the (4) average value within a 50 m radius of the site. The two 
479 definitions of the area (where the response was more than 1 cm and 
480 50 m from the site) were included to capture the influence of the 
481 geo-hydrological properties near the recharge site and away from 
482 the site. Three key characteristics of the response were used to 
483 assess the relevance of the features and to quantify the ML model 
484 performance: the area, the maximum, and the total groundwater 
485 response (Figure 4). The area of the response is defined as the area 
486 around the recharge site with more than 1 cm of groundwater 
487 response. The maximum response is the highest, and the total 
488 response is the volume of the aquifer saturated by a response of 
489 more than 1 cm. Based on the permutation importance, all five 
490 phreatic aquifer properties are used to train the model.

491 Data preprocessing was performed to improve the representation of 
492 aquifers as inputs to the ML model. The 15 model layers in AMIGO 
493 are discontinuous and are often represented by thin, highly 
494 transmissive layers. For the input of the ML model, only the 
495 characteristics of the first aquifer were used. We defined the first 
496 aquifer by combining the layers until the resistance below it exceeds 
497 200 days. This aquifer mostly consists of all 15 layers to the East and 
498 four layers towards the West. The resistance below the 15 layers was 
499 represented by the highest resistance between the layers in AMIGO 
500 (Figure 3A). The transmissivity of this aquifer is calculated based on 
501 the hydraulic conductivity and saturated thickness of the individual 
502 layers in the baseline scenario. The properties of the aquifers also 
503 exhibited right-skewed distributions with long tails, as evidenced by 
504 their interquartile ranges (Table 1). To improve the ML model's 
505 stability and performance, these properties were log-transformed 
506 and min-max scaled to 0 and 1. However, DRN and RIV stage and 
507 surface height relative to the average groundwater head were not 
508 transformed or scaled as they are linearly related to the maximum 
509 response, draining excess recharge.
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510 Table 1 Range and interquartile range of input features from AMIGO, before scaling 
511 and log-transforming some of the inputs.

Input Min
First 
quarti
le

Medi
an

Third 
quarti
le

Maxim
um

Scaled 
and log-
transfor
med

Aquifer 
transmissi
vity 
(m2/day)

0.2 920 1350 1785 5034 

Aquitard 
resistance 
(day)

200 4610 4265
0

1717
09 171709 

DRN and 
RIV 
conductan
ce 
(m2/day)

0.00
2 7.6 10.0 18.1 5053.0 

DRN and 
RIV stage 
relative to 
the 
baseline 
groundwa
ter head 
(m)

-2.7 -0.04 0.22 0.54 11.7

Surface 
level 
relative to 
the 
baseline 
groundwa
ter head 
(m)

0 0.9 1.2 1.7 49

512 Recharge scenarios - The ML models are trained on the steady-state 
513 groundwater response to additional aquifer recharge with a certain 
514 rate applied for a certain site size, calculated by the numerical 
515 model AMIGO. Scenarios with varying applied recharge rates, site 
516 sizes, and locations were simulated to produce the data used to 
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517 train the ML models. The sites were selected using Latin Hypercube 
518 Sampling (LHS) and Orthogonal Array-based Latin Hypercube 
519 Sampling (OALHS) (Sándor and András, 2004). The recharge rates 
520 applied to the topmost layer of the numerical model range from 5 
521 mm/day to 25 mm/day, and the site sizes range from 0.01 km2 to 1 
522 km2. Each site covers 16 to 1600 model cells (each model cell is 
523 25x25 m). These ranges were selected to represent a complete 
524 range of potential recharge sites. While there are no MAR projects 
525 in the study area, there was a test site 8 km from the catchment. It 
526 was 0.58 km2 in size and recharged 5 mm/day during the growing 
527 season (Tang et al., 2023). This site would fall within the range 
528 considered. Internationally, recharge between 250 mm and 1500 
529 mm is applied during the growing season, which equates to 1.4 
530 mm/day to 8.3 mm/day (de Wit et al., 2022). While some sites 
531 would fall below the range considered in this study, allowing for 
532 higher recharge rates would enable identifying the maximum 
533 potential recharge rate at the site. The recharge rate and site sizes 
534 were selected using LHS to represent the entire range.

535 The effect of aquifer recharge is determined by the interplay of 
536 multiple geohydrological properties that vary throughout the 
537 catchment. While the geo-hydrological properties are the same for 
538 all scenarios, we exposed the ML model to various combinations of 
539 these properties by varying where the recharge is applied within the 
540 model extent (Figure 2). The model extent covers 765 km2, which 
541 could consist of 75969 to 720 potential recharge sites. The location 
542 of the sites was randomly selected to represent the entire model 
543 extent in datasets of 100, 300, 500 or 1000 sites. Selecting the 
544 location at random minimizes the potential for bias, ensuring better 
545 model performance for all potential recharge sites. A similar 
546 methodology is used to select locations in previous studies (He et 
547 al., 2021; Taccari et al., 2022; Tao et al., 2022). Multiple sites were 
548 simulated simultaneously while maintaining a minimum distance 
549 between adjacent sites to reduce their interaction. Simulating 
550 multiple sites limited the number of numerical model runs. We used 
551 the OALHS method to ensure that samples are more evenly spaced, 
552 even in multiple dimensions, unlike LHS. While OALHS ensures a 
553 more uniform sampling, it does not guarantee a minimum distance 
554 between adjacent points. To enforce this condition, adjacent points 
555 are separated into groups, resulting in four numerical model 
556 scenarios from each OALHS of x and y coordinates of the recharge 
557 site's centres. Considering the dimensions of the model domain and 
558 the minimum distance, 18 sites were sampled together and then 
559 split into two groups of six and two groups of three sites. Multiple 
560 OALHS were grouped to create datasets of various sizes that 
561 represented the same sample distribution.

562 The results of the numerical model scenario runs were split into 
563 three datasets: four training datasets, which were created through 
564 resampling (with 1000, 500, 300, and 100 sites), a validation dataset 
565 (100 sites), and a test dataset (200 sites). The OALHS samples were 
566 maintained throughout the different datasets to ensure equal 
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567 representation. The recharge sites in each dataset are shown in 
568 Appendix – A. The recharge sites in the training dataset with 1000 
569 sites cover 364 km2 representing 47.6% of the model extent. Of this, 
570 47.3 km2 overlaps with the test dataset. Although some sites in the 
571 training dataset overlap with those in the testing dataset, the 
572 recharge rate and the area of the sites differ between the sites.

573 2.4. Analysis

574 The performance of the three ML models is assessed by comparing 
575 their predictions of the three key characteristics, the maximum, the 
576 area and the total response (Figure 4). The comparison uses the 
577 Nash-Sutcliffe Efficiency (NSE) metric. The NSE measures the 
578 model's ability to explain the variance in the observations and 
579 ranges from -∞ to 1, with higher values implying a better predictive 
580 ability. 

581 While NSE describes the overall model's performance, it does not 
582 account for systematic errors. The systemic errors across the range 
583 of responses are represented in a scatter plot of the estimated key 
584 characteristics from the best ML model and AMIGO. For this, we 
585 considered scenarios with a constant recharge rate of 15mm/day 
586 over recharge sites of 1 km2 across the entire model domain.  The 
587 key characteristics are also represented as maps that reveal the 
588 interactions between the inputs and the resulting response.

589

590 Figure 4 Cross-sectional view of a possible response of the groundwater to artificial 
591 recharge. All heights are relative to the baseline groundwater head. The increase in 
592 groundwater head (blue) is due to artificial recharge at the recharge site (light blue). 
593 The brown line represents the surface elevation relative to the baseline 
594 groundwater head. The maximum response, the area of the response and the total 
595 response are the key characteristics used to quantify the model performance. The 
596 vertical and horizontal axis are not symmetrical which exaggerates small changes in 
597 groundwater depth and response.
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598

599 Figure 5 Map view of the response estimated for three recharge sites (A, B, C), 
600 represented in columns, by the numerical model AMIGO (top row) and by UNET 
601 model (middle row) trained on 1000 input recharge sites. The difference between 
602 the two is represented below as the error. The recharge sites are selected for their 
603 asymmetric response caused by the interaction between the groundwater and the 
604 surface water network (Groote Beek River and IJssel River). The bottom row 
605 represents the cross sectional view of the response along the transects in the maps. 
606 The vertical and horizontal axis in these cross sections are not symmetrical which 
607 exaggerates small changes in groundwater depth and response. Basemap from 
608 OpenStreetMap-carto.

609 To showcase the advantages of the ML model, we undertook a 
610 methodology aimed at determining the optimal location and 
611 recharge rate for sites within the catchment area. This involved 
612 simulating 7,722 recharge sites across the entire study area, each 
613 covering an area of 10 hectares. The simulation included the 
614 evaluation of eleven recharge rates ranging from 5 to 25 mm/day at 
615 2 mm/day intervals for each site. Based on these simulations, we 
616 created a database of 84942 responses among which the optimal 
617 recharge sites can be identified. To identify these sites, we sought 
618 locations exhibiting the highest response at a low recharge rate 
619 based on the total volume of the response. Although related, this 
620 target differs from the volume of water stored in the aquifer. To 
621 estimate the extra volume of water which can be stored by the 
622 artificial recharge, we multiplied the total volume of the response by 
623 the specific yield of the phreatic aquifer. The specific yield used in 
624 AMIGO for transient simulations is 0.15 (Vreugdenhil, 2021) which 
625 corresponds to an aquifer composed of silt to medium sand 
626 (Johnson, 1967). This aquifer material type fits the description of the 
627 Pleistocene sands in the catchment. 

628 The assessment of these locations involved comparing their 
629 response to a constant recharge rate of 25 mm/day. Subsequently, 
630 the optimal recharge rate was discerned by identifying the minimum 



17

631 recharge rate that achieved more than 80% of the maximum 
632 response at each site. This comprehensive methodology allowed us 
633 to systematically analyse and pinpoint the most effective locations 
634 and recharge rates for artificial recharge within the catchment area 
635 while demonstrating the benefits of the ML model.

636 3. Results & Discussion 

637 This section evaluates the performance of three ML models 
638 (encoder-decoder, U-Net and attention U-net) in predicting the 
639 steady-state groundwater head responses to artificial recharge, 
640 generated by the numerical groundwater model, AMIGO. The best 
641 performing ML model has captured the asymmetric responses to 
642 the artificial recharge (Figure 5). This asymmetry is caused by the 
643 interaction of the groundwater with the surface water network such 
644 as, with rivers and drains. The surface water network drains part of 
645 the groundwater response, hence limiting the response. Despite the 
646 added complexity, the best ML model captured this interaction, 
647 predicting the response outside the recharge site within ±10 cm. In 
648 the following sections, the performance of the ML models is further 
649 examined.

650 3.1. Performance of the three machine learning 
651 models

652 All three ML models perform well when trained on 300 or more 
653 recharge sites, indicated by high (NSE values (Figure 6). They 
654 achieved a high NSE in comparing the total response and its area 
655 despite the lower NSE for the maximum response.

656 Both U-Net and Attention U-Net models exhibited similar 
657 performance and consistently outperformed the encoder-decoder 
658 model. The variants of U-NET's outperformance could be due to the 
659 increased number of model parameters and the significance of the 
660 skip connections from the encoder to the decoder block in the U-
661 Net models (Figure 3). These skip connections allow the models to 
662 capture spatially highly variable details in the input, such as DRN and 
663 RIV properties. This conclusion is further supported by the encoder-
664 decoder model's worse performance at predicting the maximum 
665 response, as high groundwater heads are strongly influenced by the 
666 surface drainage network near them, which is better captured by 
667 the U-Net models. This effect of the surface drainage network is 
668 evident in Figure 5C, where the IJssel river (Figure 2) drains some of 
669 the groundwater, causing an asymmetric response. Similarly, the 
670 Grote Beek stream, southwest of the recharge site, causes a smaller 
671 and steeper response (Figure 5B).

672 Attention U-Net learns to focus on important regions within the 
673 input that help it predict the local response more accurately. 
674 Contrary to its expected better accuracy, attention U-Net does not 
675 have a significantly different NSE than U-Net. After accounting for 
676 different training sizes, the true difference in NSE between the two 
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677 ML models is between -0.06 and 0.05 (95th percentile) based on 
678 paired student's t-test. This result is counter-intuitive as the 
679 response is highly localised and the ML models could gain from 
680 focussing on selected parts of the input data. However, the 
681 attention mechanism in attention U-Net's decoder block increases 
682 the model's memory requirement, which we compensated for by 
683 halving the number of filters in the convolution layers in the model. 
684 Based on this, we can conclude that more filters greatly improve the 
685 model performance, more than the advantages of the attention 
686 layers. For models with a smaller extent, requiring less memory, it 
687 could be more beneficial to train U-Net with more filters rather than 
688 using Attention U-Net. 

689 Furthermore, all three models improve with additional training data, 
690 particularly for the area of the response and total response (Figure 
691 6A and Figure 6C). Specifically, the U-Net model's NSE for the 
692 predicted area increased from 0.71 to 0.96 with 1000 training sites 
693 versus 100 sites, and the NSE value for the predicted total response 
694 increased from 0.76 to 0.95 with additional training sites. However, 
695 the NSE for the predicted maximum response did not consistently 
696 improve with additional training data (Figure 6B). Additional training 
697 sites improved the performance up to 500 sites, but the predicted 
698 maximum response only marginally improved when doubling the 
699 input to 1000 sites (NSE of U-Net from 0.86 to 0.87).

700

701 Figure 6 Nash-Sutcliffe Efficiency (NSE) of the key characteristics from the 
702 groundwater head response estimated by the machine learning models when 
703 trained with an increasing number of training sites along the x-axis. A high NSE 
704 (maximum of 1) indicated more accurate predictions. The three characteristics of 
705 the response (total, maximum and area of the response) are represented in columns 
706 (A, B and C).

707 Another consideration when choosing the model is the training and 
708 evaluation time. However, the training time is strongly dependent 
709 on the initial values of the parameters in the ML model and hence 
710 might not be perfectly reproduced. The initial parameters also 
711 explain the initial error that improves during the training process 
712 (Figure 7). The error does not steadily reduce during training and 
713 often fluctuates, especially early into the training. This fluctuation is 
714 likely due to a relatively high learning rate which was reduced when 
715 the training stagnated. This learning rate reduced the overall 
716 training time compared to relying on the ADAM optimiser's default 
717 learning rate. The training process seems to be slowed by the 
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718 vanishing gradient problem, exacerbated by the sparse nature of the 
719 response. The encoder-decoder model trained on 100 recharge sites 
720 stagnated at this point and only predicted low responses. The model 
721 needed more than 100 sites to train further.

722 The relative effect of the training size on the total training time 
723 would likely be consistent in future training attempts. Additional 
724 training sites linearly increase the training time, from 70 min when 
725 trained on 100 sites to 10 hours for 1000 sites. Although it is a long 
726 time, it is 'passive time' where no human interaction is required. 
727 Each training iteration for the encoder-decoder model is shorter, 
728 but it rarely outperformed the variants of U-Net (Figure 7). Between 
729 the variants, Attention U-Net trained faster than U-Net for smaller 
730 datasets with 100 sites and 300 sites and achieved lower validation 
731 errors. This is likely due to the model's ability to learn regions to 
732 focus on through training. However, U-Net can compensate for the 
733 attention mechanism with additional training data and 
734 outperformed Attention U-Net when trained on 1000 sites. 

735

736 Figure 7 Validation MSE that was tracked during the training process. The MSE is 
737 calculated for an unseen set of recharge sites, validation set, different from the sites 
738 used to train the model. Additional training sites improve the final model but also 
739 increase the training time.

740 The evaluation time for the models ranges between 0.06 s to 0.43 s. 
741 The average evaluation time for the three models ranged between 
742 0.09 s and 0.11 s and varied significantly between the models 
743 (Kruskal-Wallis test p-value < 0.01). However, this difference is not 
744 of practical significance, especially when compared to the average 
745 AMIGO run that took 1290 s (between 688 s and 2227 s). The 
746 slowest ML model, U-Net, could evaluate 3000 scenarios during the 
747 average time for a single scenario run in AMIGO. 

748 3.2. Performance of the best model

749 The U-Net model trained on 1000 recharge sites is the best-
750 performing ML model with the highest NSE for predicting area and 
751 total response. However, NSE does not account for systematic 
752 errors. Figure 8 shows good agreement between the U-Net and 
753 AMIGO estimates, but often U-Net underestimates the maximum 
754 groundwater response. 
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755 Figure 5C is one such scenario where U-Net underestimates the 
756 maximum response; limiting the response to the bottom of a local 
757 depression at the recharge site. The recharge rate at the site 
758 exceeds the maximum rate the groundwater can spread away from 
759 the site, leading to the groundwater head reaching the surface and 
760 seeping out through overland flow (cross-section of Figure 5C). 
761 Although such a high recharge rate is not efficient at storing water in 
762 the subsurface, the occurrence of overland flow would encourage a 
763 redesign of the recharge site. AMIGO can capture this phenomenon, 
764 but the response from U-Net does not reach the surface level. The 
765 response from U-Net is limited by the deepest surface point, 
766 resulting in a larger error at the recharge site (Figure 5C). However, 
767 U-Net underestimates the response, which still suggests that the 
768 site is inefficient at storing water and motivates redesigning the 
769 recharge site. Additionally, this error has a minor impact on the 
770 response away from the recharge site, where the response from 
771 both AMIGO and U-Net are mostly within 7.2cm of each other (99th 
772 percentile). This error is comparable to the responses in Figure 5A 
773 and Figure 5B, 9.1cm and 5.4cm respectively.

774 The U-Net model shows a negative bias for high values in both the 
775 total response and area of response. Specifically, the U-Net model 
776 underestimates the response of the top ten sites with the highest 
777 total response by 15% (see Figure 8A) and the area of the top ten 
778 widest response by 13%. Notably, these results are only applicable 
779 to responses more than 5cm. When including the smaller responses, 
780 up to 1cm, the bias increases to 26% (Figure 8C). Interestingly, 
781 increasing the lower limit to 10cm did not decrease the bias (13.1% 
782 vs 13.0%), indicating that U-Net underestimates the small responses 
783 and the bias increases for responses less than 5cm. Although the 
784 total response is less sensitive to the minimum limit, it still increases 
785 from 12% to 16% when considering responses less than 5cm.

786

787 Figure 8 Scatter plot of the key characteristics of the response, estimated by U-Net 
788 vs those from the numerical model, AMIGO. These results are for recharge sites 
789 across the entire model domain, with 15mm/day recharge applied over 1 km2. The 
790 total response and area of the response were calculated for responses of more than 
791 1cm, 5cm and 10cm to indicate the model's accuracy at predicting smaller 
792 responses. The line is used to represent the trend in the scatter created from a local 
793 polynomial regression fitting.
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794

795 Figure 9 A comparison of the input data (top row) and the predictions of the three 
796 key characteristics (total, maximum and area of the response) from the numerical 
797 groundwater model (AMIGO, middle row) and our best machine learning model (U-
798 Net trained on 1000 recharge sites, bottom row) for 1km2 recharge sites with 
799 15mm/day artificial recharge over the model domain. 

800 3.3. Input features

801 The key response characteristics: area, maximum, and total 
802 response, depend on various hydro-geological inputs and their 
803 interaction. This interaction is evident in Figure 9, where the key 
804 characteristics are not directly related to any single hydro-geological 
805 input but a combination. U-Net could reproduce the spatial patterns 
806 of the key characteristics accurately, indicating that it has captured 
807 the effect of the interaction. Among the key characteristics, the 
808 maximum response has the most direct dependence on the 
809 groundwater depth below the ground surface and the DRN and RIV 
810 stage. These inputs limit the maximum response by draining some of 
811 the excess recharge. The recharge increases the groundwater head 
812 in the aquifer up to the drainage level. As the head increases above 
813 the drainage level, the groundwater is drained to the surface water 
814 network, depending on the head above the drain level and the drain 
815 conductance. This dependence is evident for sites at the elevated 
816 regions near the rivers. These rivers have a high conductance and 
817 hence more strongly limit the groundwater response. This 
818 dependency is also captured when estimating the importance of the 
819 inputs using the permutation importance approach (Figure 10). This 
820 approach suggests that the maximum response is significantly 
821 dependent on the average depth near the site, the maximum and 
822 minimum drain conductivity, transmissivity, and the minimum 
823 resistance. 

824 The area of the response is the second key characteristic with a 
825 more direct relation to the input variables. The area depends on the 
826 aquifer's transmissivity, the minimum resistance between the 
827 aquifers, and the level and conductance of the surface drainage 
828 network (Figure 9) which is also reflected in the permutation 
829 importance (Figure 10). Higher transmissive aquifers allow for a 
830 faster flow of water away from the recharge site at a gentler 
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831 gradient. The faster flow and a gentler gradient result in the artificial 
832 recharge providing water to a wider area. The dependency on the 
833 surface drainage network can be explained by making a comparison 
834 with groundwater abstraction. For groundwater abstractions, the 
835 equation for leakage factor is related to the area around an 
836 abstraction well where leakage occurs through the aquitard due to 
837 the pumping in the aquifer below. Higher leakage factors indicate 
838 that pumping would reduce the groundwater head in a wider area, 
839 increasing the leakage in that area. Leakage factor (𝜆) is the square 
840 root of the ratio of the aquifer's transmissivity (KD) and the aquitard 

841 conductance (K’/D') above the aquifer: 𝜆 = 𝐾𝐷
𝐾′/𝐷′

, where K and D 

842 are the hydraulic conductivity and thickness of the layers. Phreatic 
843 aquifers do not have an overlying aquitard; for these aquifers, the 
844 properties of the surface drainage network are used instead (van 
845 der Gaast et al., 2005). Besides the effect of the aquifer 
846 transmissivity and resistance of the surface water network, the 
847 permutation importance also suggests that the area of the response 
848 depends on the minimum aquitard resistance below the aquifer 
849 (Figure 10). However, the maximum and average resistance is only 
850 significant up to a level of 5%. 

851 The total response is the most complex and important key 
852 characteristic of the response, related to the total volume of fresh 
853 water stored using artificial recharge. It combines the other two key 
854 characteristics, i.e. the maximum and the area of the response. The 
855 total response also depends on the transmissivity and the surface 
856 drainage network properties as they affect both the maximum and 
857 the area of the response (Figure 9). Along with these inputs, the 
858 total response depends on the average groundwater depth near the 
859 site and the minimum aquitard resistance below the aquifer up to a 
860 significance level of 1% (Figure 10). Based on these results, all five 
861 features are necessary to ensure an adequate representation of the 
862 system in the ML model.
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863

864 Figure 10 The permutation importance of the hydrological properties of the first 
865 aquifer. This importance is the increase in the mean squared error at predicting 
866 three performance indicators when the hydrological properties of the first aquifer 
867 are randomized. The mean, minimum, and maximum values of the property where 
868 the groundwater response was more than 1cm and the average of the property 
869 within a 50m radius of the site were used to represent the hydrological properties 
870 influencing the response at the site. The three performance indicators are (1) the 
871 area of the groundwater response, (2) the maximum response, (3) total response. P-
872 values show the significance of the input characteristics in explaining the 
873 performance indicators. The average, maximum or minimum of the hydrological 
874 properties are important to explaining the key characteristics of the response up-to 
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875 a significance level of 0.01 and were hence included as inputs to the ML model.

876

877 Figure 11 Optimal recharge rate for 10 ha recharge sites across the entire study 
878 area. The total volume of the response, in million m3, to recharge of 25mm/day 
879 applied in sites of 10 ha is shown in A. However, this recharge rate is often 
880 inefficient. B is the volume of water stored, in million m3, when recharging at a rate 
881 that achieves at least 80% of the response at 25 mm/day. The corresponding 
882 recharge rate, in mm/day, is in C.

883 3.4. Applications

884 The ML model's efficiency, being 3000 times faster than the 
885 numerical groundwater model, makes it suitable for various 
886 applications requiring numerous steady-state model runs. For 
887 instance, it can greatly benefit tasks like optimizing recharge rates, 
888 determining the optimal size and location of recharge sites, and 
889 comparing multiple locations rapidly. In cases where recharge 
890 volume is predetermined, such as by regulatory mandates, the ML 
891 model enables swift comparison of multiple locations. This 
892 facilitates the evaluation of various combinations of recharge rates 
893 and site areas, aiding in decision-making processes. 

894 The bottom row of Figure 9 illustrates a notable example where the 
895 key characteristics of 720 recharge sites were compared. The ML 
896 model efficiently simulated these 720 recharge sites within 144 
897 seconds, while the numerical model required 11 hours for the same 
898 task. To enhance the speed of the numerical model runs, each run 
899 simulated 6 equally spaced recharge sites, and five runs were 
900 executed in parallel. This comparative analysis underscores the 
901 substantial speed-ups achieved when using the ML model.
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902 The results highlight specific regions within the catchment area, 
903 particularly the center and eastern edges, as promising potential 
904 recharge sites. Additionally, smaller regions near the northern and 
905 southwestern edges of the model domain show promise. Figure 11A 
906 depicts a similar analysis using the ML model, focusing on recharge 
907 at a rate of 25 mm/day over 10 ha sites within the model domain. 
908 The results reveal that, at this recharge rate, only the center and 
909 eastern regions exhibit a high total response. This observation 
910 suggests that different locations are more suitable at different 
911 recharge rates.

912 To illustrate this point, we conducted a comprehensive comparison 
913 involving the steady-state response of 7,722 recharge sites, each 
914 covering an area of 10 hectares, across 11 recharge rates ranging 
915 from 5 to 25 mm/day at 2 mm/day intervals. In total, the response 
916 from 84,942 scenarios were predicted with the ML model in 980 
917 seconds, which would have taken the numerical model 270 days 
918 with the optimizations used to simulate 720 sites. This analysis 
919 aimed to determine the minimum recharge rate that achieves 80% 
920 of the highest total response for each site. Recharge sites located in 
921 the eastern region of the catchment achieved a high total response 
922 volume, saturating up to 4.35 million m3 (Figure 11A), corresponding 
923 to 0.65 million m3 water stored (Figure 11B) at the optimal recharge 
924 rate of 11 mm/day (Figure 11C). This effectiveness could be 
925 attributed to the relatively low subsurface transmissivity, resulting 
926 in a localized response to artificial recharge. Consequently, the 
927 influence of streams and ditches away from the recharge site is 
928 minimized. The high steady-state response achieved at a low 
929 recharge rate makes this region emerge as a favourable location for 
930 artificial recharge.

931 Conversely, the central portion of the model domain exhibits a 
932 relatively high total response of 3 million m3 while storing 0.45 
933 million m3 of water. This site benefits from a higher recharge rate of 
934 23 mm/day (Figure 11C). Given the widespread response of these 
935 recharge sites (Figure 9), they hold the potential to effectively raise 
936 the groundwater level for the entire area, thereby enhancing water 
937 availability for the broader natural environment. This underscores 
938 the strategic importance of optimizing recharge rates based on the 
939 specific characteristics of different regions to maximize the positive 
940 impact on groundwater levels and ecosystem sustainability. 

941 This analysis can readily incorporate variations in storage 
942 coefficients across the model domain. By leveraging available data 
943 on storage coefficients, we can optimize both stored water and 
944 increases in groundwater head. While this integrated approach 
945 would enable a comprehensive assessment of the groundwater 
946 response and the alleviation of water stress on natural ecosystems 
947 and the environment it is important to note that our current study 
948 focuses on the steady-state response which is independent of the 
949 storage coefficients and hence including the coefficient is beyond 
950 the scope of this study. This focus allows us to delve deeply into the 
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951 system's long-term behaviour without the added complexity of 
952 variable coefficients.

953 3.5. Steady-state vs transient scenarios

954 Steady-state scenarios depict the groundwater heads in a state of 
955 equilibrium, where the inflows balance outflows without changes in 
956 the storage within the cells. However, these scenarios assume no 
957 changes in the boundary conditions throughout the simulation, such 
958 as recharge, DRN, and RIV properties. These scenarios are thus not 
959 intended to accurately reflect temporal dynamics, such as seasonal 
960 variations in precipitation. Nevertheless, steady-state scenarios 
961 provide valuable initial estimates, particularly for evaluating the 
962 long-term effects of adaptation measures such as artificial recharge 
963 when applying a constant recharge rate. Moreover, they require less 
964 input data than transient scenarios and are faster to simulate than 
965 transient scenarios. As a result, the data for training the ML model 
966 are often available, making our technique applicable to more areas. 
967 Having fewer input data that do not change during the simulation 
968 facilitates precise attribution of the changes between scenarios to 
969 specific inputs. This study leverages the benefits of steady-state 
970 scenarios to demonstrate the applicability of the technique to 
971 optimize artificial recharge sites. 

972 Transient scenarios have the advantage that they can offer a more 
973 detailed depiction, especially on the response of groundwater heads 
974 and storage to artificial recharge in time, by accounting for the 
975 dynamic nature of the system, based on which we can assess the 
976 effect of seasonal variability on the system. Transient scenarios also 
977 explicitly account for the changes in storage within each time step 
978 due to the additional artificial recharge or due to seepage to the 
979 surface water network. Understanding the effect of the geo-
980 hydrological properties that affect the changes in storage could 
981 enhance the optimization of recharge site locations. Given the 
982 successful development of an ML technique to mimic steady-state 
983 conditions, as is done in the current study, the next step to develop 
984 such an approach for transient conditions is warranted. It should be 
985 noted however that successful implementation is not a given, as 
986 complexity increases. This concerns e.g. differentiation between 
987 periods of infiltration building up certain storage (autumn and 
988 winter) and storage decay during summer seasons, for which 
989 different ML approaches might be needed. 

990 4. Conclusions

991 This study aims to understand the design choices for a machine 
992 learning (ML) model to predict the steady-state groundwater 
993 response to artificial recharge. It compares three state-of-the-art ML 
994 models that best reproduce the response based on an identified 
995 subset of the geo-hydrological data. The ML models were trained on 
996 the results from a pre-calibrated numerical groundwater model to 
997 reproduce the simulated response. In doing so, the response can be 
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998 estimated nearly instantly and help select appropriate artificial 
999 recharge sites and optimise the sites. The ML model's performance 

1000 was judged based on their performance at three key response 
1001 characteristics: the maximum response, the area of the response 
1002 and the total response.

1003 Three convolutional neural networks were trained, of which U-Net 
1004 and Attention U-Net could accurately reproduce the response. 
1005 These models contain skip connections that enable the model to 
1006 capture spatially highly variable details in the inputs, such as DRN 
1007 and RIV. Additionally, both these models have similar performance 
1008 suggesting that the attention mechanism does not compensate for 
1009 its memory requirement. With more available memory, training a U-
1010 NET with more filters could be more beneficial than opting for 
1011 Attention U-NET. Both variants of U-NET achieved a high Nash 
1012 Sutcliffe Efficiency (NSE) of 0.9 when trained on the results from 500 
1013 recharge sites. Additional training sites improved the NSE to 0.96 at 
1014 predicting the area of the response and the total response, while 
1015 the maximum response did not show a marked improvement to 
1016 additional data. However, additional data increases the computation 
1017 time to generate the data and train the model, negating some of the 
1018 benefits of the speed-up from the ML model. Despite the increased 
1019 computation, the trained ML models could then be used to consider 
1020 more scenarios, estimating the response within 0.24 s (95th 
1021 percentile), significantly faster than the numerical model, which 
1022 took 1290 s. The slowest ML model, U-Net, could evaluate 3000 
1023 scenarios during the average time for a single scenario run in 
1024 AMIGO.

1025 Although the ML models trained in this study have a high NSE, they 
1026 have their limitations. The models underestimate the maximum 
1027 response in cases where groundwater levels reach the surface. Our 
1028 best model is U-NET trained on 1000 sites; it limits the head to the 
1029 deepest point at the recharge site (cross-section in Figure 5C). This 
1030 error leads to underestimating the total response for scenarios with 
1031 a high response. Despite this underestimation, the results do not 
1032 impact the final recommendation that the scenario is sub-optimal 
1033 and a similar response is possible with a lower recharge rate. 
1034 Furthermore, the underestimation has a minor impact on the 
1035 response away from the site or on the total response which is the 
1036 most important characteristic to increase the water availability. 
1037 Another limitation of the model is the lower accuracy in predicting 
1038 small responses of less than 5cm. However, the smaller responses 
1039 have a minor impact on the total response and hence should not 
1040 affect the optimisation of the recharge sites.

1041 When training similar models, future work must decide between the 
1042 geo-hydrological inputs that adequately represent the groundwater 
1043 system. While the groundwater head response to phreatic aquifer 
1044 recharge is mostly dependent on the properties of the phreatic 
1045 aquifer itself, deeper aquifers do impact the response. The deeper 
1046 aquifers have a diminishing impact on the flow which we addressed 
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1047 by combining the numerical model layers with a low resistance 
1048 between them and focussing specifically on the first aquifer. Despite 
1049 the potential for enhancing the model's accuracy by incorporating 
1050 the properties of deeper aquifers, the ML models trained on the 
1051 properties of the first aquifer could reproduce the steady-state 
1052 response. Among the properties, we identified five crucial 
1053 properties based on the results of the numerical model's scenarios 
1054 and Altmann's permutation importance approach: transmissivity, 
1055 resistance below the phreatic aquifer, depth to the groundwater, 
1056 the water level in the surface water network and the network's 
1057 hydraulic conductance to flow into the aquifer. Among these inputs, 
1058 the transmissivity and surface water network properties are the 
1059 most important as they impact all the key characteristics of the 
1060 response. Considering the importance of these inputs, future 
1061 research could focus on the effect of artificial recharge on these 
1062 inputs. While the effect of higher transmissivity due to higher 
1063 saturated thickness is incorporated in the numerical model 
1064 simulations, the higher river stages due to greater flux to the river 
1065 are not incorporated. A higher river stage would reduce the river 
1066 flux which would increase the response. However, incorporating this 
1067 would require generating the training data using a coupled surface 
1068 water – groundwater model which is beyond the scope of this 
1069 research.

1070 Fast models for specific tasks could prove an effective aid in 
1071 designing good aquifer recharge sites. The speed-up could enable 
1072 the water management authorities to consider many more 
1073 scenarios in and around the selected catchment. The increased need 
1074 for such an approach also follows from literature, e.g. from using 
1075 ML-models to explain groundwater fluctuations (Sahoo et al., 2017) 
1076 and the exploration of the influence of different uncertainties 
1077 including future climate conditions while considering 1872 future 
1078 scenarios (Miro et al., 2021). The approach could also motivate and 
1079 justify the decisions to stakeholders improving support for water 
1080 conservation. While this study does not demonstrate the model's 
1081 performance in other regions, a similar model could best suit that 
1082 region's challenges. The model in this study could serve as a starting 
1083 point, and transfer learning techniques could be deployed, reducing 
1084 the number of training scenarios needed and the training time. 

1085 Finally, we identified challenges when covering a larger spatial 
1086 extent by the model. The larger extent increases the spatial GPU 
1087 memory required when training the machine learning model. The 
1088 authors limited the size of the Attention U-Net to fit in the 16 G.B. 
1089 available in NVIDIA Tesla T4 GPUs. Training an Attention U-Net with 
1090 more filters could make it outperform U-Net. Similarly, the 
1091 adversarial loss from generative adversarial networks (GANs) could 
1092 further improve the model trained, but this required training an 
1093 adversarial network alongside, increasing the memory overhead in 
1094 the process. 
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1095 The models in this study focus on the groundwater response within 
1096 the Baakse Beek catchment in the Netherlands. Future researchers 
1097 could focus on training a single model for different locations, in 
1098 order to investigate to what extent an ML model could be generally 
1099 applicable and usable in catchments with sparse data. However, a 
1100 similar extent must be maintained to ensure it can predict the entire 
1101 spatial extent of the response. Furthermore, the current model is 
1102 limited to steady-state scenarios, and considering the response's 
1103 evolution during dryer periods could influence design choices. 
1104 Groundwater heads are deeper during dryer periods, increasing the 
1105 potential response to MAR. The groundwater fluctuations near the 
1106 recharge site are sensitive to the storage coefficient of the 
1107 surrounding aquifer which is not considered in steady-state 
1108 groundwater response. The U-Net trained in this study may be 
1109 extended for more complex scenarios and can be used to capture 
1110 the effect of other geo-hydrological properties.
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1408 Highlights

1409• U-Net accurately reproduces the groundwater response to artificial 
1410 recharge
1411• Inputs include properties of the first aquifer, drainage network, and 
1412 recharge rate
1413• Transmissivity and surface water networks significantly impact the 
1414 response
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1415• U-Net representing a 3000-fold speed up compared to gridded 
1416 groundwater model
1417• Minor benefits from more than 500 recharge sites for training

1418


