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Management Summary 

A Roadmap to Creating Digital Twins for Drinking Water Treatment 

Authors: Siddharth Seshan, Mollie Torello, Dr Martin Korevaar, Dr Mark Morley 

The concept of Digital Twins, as evolving representations of physical systems, has gained substantial traction across 

diverse fields including drinking water treatment. However, realizing the full potential of Digital Twins faces significant 

challenges, due to a lack of understanding and the absence of standardized terminologies and practices. To address 

this, we provide a comprehensive review, defining Digital Twins and exploring various data architectural frameworks 

for their implementation alongside modelling approaches for drinking water treatment processes. Subsequently, we 

introduce a roadmap developed for Digital Twin implementation within drinking water treatment, elucidating various 

organizational and technological paths conceptualised based on the literature, interviews with leading organisations 

and domain expertise. Finally, a functional design is presented, which serves as the blueprint for putting the roadmap 

into action for a real-world application. It focuses on a case study at De Watergroep, specifically a water softening 

treatment process. This design provides a comprehensive framework and analytical methodology to understand 

stakeholder motivations, identify the Digital Twin’s goals formulate the requirements and application services that 

can be included in the design and implementation of a Digital Twin for the process. 

 

 

The developed Digital Twin Roadmap 

Importance: Demystifying and Clarifying Digital 

Twins 

The increasing popularity of Digital Twins has resulted 

in inconsistent terminology and a lack of standardized 

methods for implementation. Water companies need 

clarity on the necessary organizational and technical 

prerequisites for implementing Digital Twins and 

specific guidance for to embark on developing and 

integrating Digital Twins to enhance their drinking 

water treatment processes. 

Method: Literature Review, Interviews and 

Functional Design Thinking 

A comprehensive literature review covered aspects 

such as Digital Twin definitions, types of Digital Twins, 

industrial examples, data architectural frameworks 

and modelling of drinking water treatment processes. 
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In addition, interviews were conducted with leading 

organisations where key information is gathered on 

the experiences gained from real-world applications. 

We explored various data architectural frameworks 

for their implementation alongside modelling 

approaches for drinking water treatment processes. 

Finally, we used the functional design methodology 

and design thinking based on stakeholder 

engagement and Enterprise Architectural Framework 

principles on a case study from De Watergroep. 

Specifically a softening treatment process. 

Results: Digital Twin Roadmap, Functional Design 

A Digital Twin is defined as a digital copy (virtual 

model) of a physical system. This model is continually 

fed with data and provides a glimpse into the asset's 

past, present and future behaviour. We developed a 

robust and comprehensive roadmap for creating and 

integrating Digital Twins for drinking water treatment 

processes. The roadmap was applied for the 

functional design of a pilot case treatment unit, which 

includes the motivations, requirements and identified 

Digital Twin applications. 

 

Application: Use the roadmap to guide Digital Twin 

implementation 

Water companies are currently undergoing major 

organisational and technical changes as part of their 

digital transformation journey and digitalisation 

strategy. Water companies should focus on 

interdisciplinary collaboration, data infrastructure 

and technology assessment and organizational 

readiness to effectively implement Digital Twins. This 

report and the developed roadmap serve as guiding 

principles to facilitate this transition. 

 

Report 

This research is reported in A Roadmap to Creating 

Digital Twins for Drinking Water Treatment (BTO-

2023.080). 
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Managementsamenvatting 

Een roadmap voor het creëren van Digital Twins voor drinkwaterbehandeling 

Auteur(s): Siddharth Seshan, Mollie Torello, Dr Martin Korevaar, Dr Mark Morley 

Het concept van Digital Twins, als zich ontwikkelende representaties van fysieke systemen, krijgt op verschillende 

gebieden veel aandacht, inclusief de drinkwaterbehandeling. Er bestaan echter grote uitdagingen rond het 

realiseren van het volledige potentieel van Digital Twins, zoals een gebrek aan begrip en het ontbreken van 

gestandaardiseerde terminologie en praktijken. Om dit aan te pakken, bieden we een uitgebreide review, waarin 

Digital Twins worden gedefinieerd en verschillende gegevensarchitectuurkaders voor hun implementatie worden 

onderzocht, naast modelleringsbenaderingen voor drinkwaterbehandelingsprocessen. Vervolgens introduceren we 

een stappenplan dat is ontwikkeld voor de implementatie van Digital Twins binnen de drinkwaterbehandeling, 

waarbij verschillende organisatorische en technologische paden worden belicht die zijn geconceptualiseerd op 

basis van de literatuur, interviews met toonaangevende organisaties en domeinkennis. Tot slot wordt een 

functioneel ontwerp gepresenteerd, dat dient als blauwdruk voor het in praktijk brengen van het stappenplan voor 

een toepassing in de echte wereld. Het richt zich op een case study van De Watergroep, specifiek een 

wateronthardingsproces. Dit ontwerp biedt een uitgebreid raamwerk en analytische methodologie om de 

motivaties van belanghebbenden te begrijpen, de doelen van de Digital Twin te identificeren en de vereisten en 

applicatieservices te formuleren die kunnen worden opgenomen in het ontwerp en de implementatie van een 

Digital Twin voor drinkwaterbehandelingsprocessen. 

 

 

De roadmap voor een Digital Twin 

Belang: Digital Twins verduidelijken en verhelderen 

De toenemende populariteit van Digital Twins heeft 

geleid tot inconsistente terminologie en een gebrek 

aan gestandaardiseerde methoden voor 

implementatie. Waterbedrijven hebben duidelijkheid 

nodig over de noodzakelijke organisatorische en 

technische voorwaarden voor het implementeren 

van Digital Twins en specifieke begeleiding om te 

beginnen met het ontwikkelen en integreren van 
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Digital Twins om hun drinkwaterbehandelings 

processen te verbeteren. 

Aanpak: Literatuuroverzicht, interviews en 

functioneel ontwerpdenken 

Een uitgebreide literatuurstudie behandelde 

aspecten zoals definities van Digital Twin, soorten 

Digital Twins, industriële voorbeelden, raamwerken 

voor gegevensarchitectuur en modellering van 

drinkwaterbehandelingsprocessen. Daarnaast 

werden interviews gehouden met toonaangevende 

organisaties om belangrijke informatie te verzamelen 

over de ervaringen die zijn opgedaan met 

toepassingen in de praktijk. We onderzochten 

verschillende raamwerken voor 

gegevensarchitectuur voor hun implementatie, naast 

modelleringsbenaderingen voor 

drinkwaterbehandelingsprocessen. Tot slot 

gebruikten we de functional design-methodologie en 

design thinking op basis van betrokkenheid van 

belanghebbenden en Enterprise Architectural 

Framework-principes op een casestudy van De 

Watergroep, specifiek een wateronthardingsproces. 

Resultaten: Digital Twin Roadmap en functional 

design 

Een Digital Twin wordt gedefinieerd als een digitale 

kopie (virtueel model) van een fysiek systeem. Dit 

model wordt voortdurend gevoed met gegevens en 

biedt een kijkje in het verleden, het heden en het 

toekomstige gedrag van het bedrijfsmiddel. We 

ontwikkelden een robuust en uitgebreid stappenplan 

voor het creëren en integreren van Digital Twins voor 

drinkwaterbehandelingsprocessen. Het stappenplan 

werd toegepast voor het functionele ontwerp van 

een pilot case behandelingseenheid, met daarin de 

motivaties en vereisten en geïdentificeerde Digital 

Twin toepassingen. 

 

Toepassing: gebruik de routekaart om 

implementatie van een Digital Twin te begeleiden 

Waterbedrijven ondergaan momenteel grote 

organisatorische en technische veranderingen als 

onderdeel van hun digitale transformatietraject en 

digitaliseringsstrategie. Waterbedrijven moeten zich 

richten op interdisciplinaire samenwerking, 

beoordeling van data-infrastructuur en -technologie 

en organisatorische gereedheid om Digital Twins 

effectief te implementeren. Dit rapport en de 

ontwikkelde routekaart kunnen als leidraad dienen 

om deze overgang te vergemakkelijken. 

 

Rapport 

Dit onderzoek is beschreven in het rapport A 

Roadmap to Creating Digital Twins for Drinking 

Water Treatment (BTO-2023.080).
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1 Introduction 

1.1 Description 

This report describes the development of a roadmap for implementing a Digital Twin for drinking water treatment 

processes, enabling almost real-time water quality monitoring. Building upon existing knowledge within and outside 

the sector, the roadmap guides the development of Digital Twins, which represent virtual copies or models of real 

systems. These Digital Twins mimic physical processes and rely on the same data inputs as the actual processes. For 

drinking water treatment, a Digital Twin comprises process models fed by data from a data management or process 

information system. Depending on its functionality, a Digital Twin can provide insights into water quality, enhance 

monitoring and enable more efficient management of the process assets and operation. It forms a crucial foundation 

for information-driven control and automation of treatment processes, offering real-time views of various water 

quality parameters through physical-chemical models and sensor data fusion.  This project seeks to advance water 

purification processes by integrating Digital Twin technology, offering a systematic roadmap that offers both a 

comprehensive approach and guidelines for implementation. The outcomes are expected to empower water 

companies with real-time data, leading to optimized treatment processes and more sustainable production of high-

quality drinking water.  

1.2 Purpose and Significance 

The project responds to the growing need for organizations to reduce reliance on employee experience and shift 

towards more data-driven decision-making whilst seeking to retain operator knowledge about the systems involved. 

Digital Twins can play a key role in this transition, offering a virtual representation of reality. The roadmap outlines 

the steps involved in developing a Digital Twin specifically for water treatment process, ensuring not only technical 

integration but also addressing organizational aspects such as data governance, skill development and structural 

changes. 

1.3 Outputs and Applications 

The outcomes of this study include a literature review of practical and scientific knowledge related to Digital Twins, 

a shared understanding of Digital Twin concepts within the Dutch and Flemish drinking water sector and a detailed 

roadmap for developing Digital Twins for water treatment processes. The roadmap covers aspects such as the 

definition of the purpose of the Digital Twin, technical integration with water company data systems, organizational 

recommendations and guidelines for adopting standards and development platforms. 

1.4 Target Audience 

This report seeks to inform innovators, management, ICT professionals and practitioners who are interested in or 

tasked with the early stages of the development of a Digital Twin for water treatment processes.  It is also relevant 

to the wider audience of stakeholders in this domain.  Those involved in this project have included process 

technologists, ICT professionals, data engineers, data architects, management and innovation professionals within 

water companies.  The relevance of the Digital Twin to these stakeholders is readily apparent: Process technologists 

benefit from real-time water quality insights, while data engineers are able to use Digital Twins to simplify their 

analyses and collaborate with technologists. ICT professionals provide technical support and data scientists and 

researchers generate insights and apply them. Collaboration between different domain experts, including process 
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technologists, asset managers, ICT professionals and data managers, is crucial for the successful implementation, 

adoption and maintenance of a Digital Twin. 

1.5 Activities 

The project activities involved gathering scientific knowledge, exploring existing implementations of Digital Twins, 

identifying relevant Key Performance Indicators (KPIs), assessing current data infrastructure at water companies and 

developing a comprehensive roadmap. A functional design of a case study water treatment process, water softening 

at De Watergroep, has been developed with intensive stakeholder-engagement to both inform the design of the 

roadmap and to serve as an example of its application.  The functional design encompasses an overview of the 

treatment process selected as the case study, the procedure of selecting a core team, identifying an appropriate 

value proposition and a set of appropriate Application Services to implement a successful Digital Twin.  The design 

further considers the necessary steps in elucidating the drivers and concerns of the process stakeholders, deriving 

goals for the Digital Twin from them and clarifying the Design Principles and Requirements that lead to the 

identification of the Application Services and Outcomes required.  
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2 Literature Review 

2.1 Introduction 

The concept of Digital Twins, as an evolving representation of physical systems, has much interest across diverse 

fields. Digital Twins offer real-time insights, facilitate simulations and promise to revolutionize industries by 

enhancing decision-making and system optimization. However, the full realization of Digital Twin technology's 

potential faces significant challenges, primarily related to the lack of standardized terminologies and practices. This 

impedes the identification of commonalities in frameworks and makes it challenging for users to navigate the field. 

The architectural implementation of Digital Twins is tackled in detail in the literature.  The Reference Architecture 

Model establishes a common framework for Industry 4.0 solutions, aiding organizations and stakeholders in 

integrating technologies and defining Digital Twin applications. It includes components such as physical devices, edge 

devices for data processing, network infrastructure for data exchange, cloud infrastructure for storage and analysis, 

software applications for data analysis and decision-making and user interfaces for interaction with other systems. 

In addition to addressing issues related to standardization in Digital Twin architectures, there is growing attention to 

the development of models that underpin these digital representations. Model development is recognized as an 

integral component for the successful implementation of Digital Twins. Models serve as alternative representations 

of real-world systems, encoding knowledge and information acquired from prior experience and processed data. 

Particularly in the context of water treatment systems, these models often rely on mathematical equations to define 

temporal and spatial relationships among variables, explaining various processes (Therrien et al., 2020). With the 

growing popularity of artificial intelligence (AI), data-driven methods and the upcoming field of hybrid modelling, the 

choice of model types and technologies plays a key role for Digital Twins and can vary for different treatment 

processes. 

In the following sections, we delve into a comprehensive review starting by defining what a Digital Twin is, discuss 

the various stages and types of Digital Twins and present industrial example. We then examine different data 

architectural frameworks used in Digital Twin implementations. Additionally, we explore various modelling 

approaches for DWT processes, including process, data-driven and hybrid modelling. Finally, we introduce a decision 

framework to guide the selection of the model type for a Digital Twin, considering the specific characteristics of the 

DWT process and its operations. 

2.2 General 

2.2.1 What is a Digital Twin? 

A Digital Twin is defined as a digital copy (virtual model) of a physical system. This model is continually fed with data 

and provides a glimpse into the past, present and future behaviour of the asset (Alzamora et al., 2021; Armstrong, 

2020). The concept of a Digital Twin was first developed by Dr. Michael Grieves from Michigan University (USA) in 

2003 (Grieves, 2018). Since then, many sectors have benefited from taking sensor data and linking them to Digital 

Twins such as aerospace, automotive, infrastructure, energy, medical, logistics, river management, flood control and 

manufacturing (Castro-Gama et al., 2020).  

For technical systems, Digital Twins are used for mirroring physical systems so that decision makers can make better 

informed decisions to improve the system management and life-cycle (Alzamora, Conejos et al. 2021). Some 

examples of Digital Twin usages are (Alzamora et al., 2021; Armstrong, 2020; Castro-Gama et al., 2020; Pesantez et 

al., 2022): 
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• development of Master Plans to make long-term projections and evaluating new scenarios; 

• estimate unprecedented scenarios and long-term impacts on a system; 

• sustainable reengineering of systems aimed at reducing environmental, health and safety impacts; 

• provide a better understanding of the system performance to optimize operations and maintenance; 

• assist operators on decision making in real time by simulating issues in the Digital Twin prior. 

Digital Twins should not be confused with models. Conventionally, models are usually offline static representations 

that do not allow for real-time data integration. Digital Twins are dynamic and constantly changing with the 

introduction of real-time data from the Physical Twin. Digital Twins can provide insight into the interactions between 

multiple data sources and physical assets unlike a traditional model. Therefore, a Digital Twin is able to show in real-

time what is happening within the Physical Twin unlike a traditional model which only provides “what if” scenarios 

(Castro-Gama et al., 2020; Jones et al., 2020). However, the operationalising of a traditional model to perform “what 

if” scenarios, along with its integration with historical data, can in fact be considered a feature of a Digital Twin. 

Therefore, a Digital Twin can very much include a model within its functionality, but they also include the integration 

with multiple data and/or real-time data. Another distinction is the potential capability of Digital Twins to provide 

specific information back to the Physical Twin. This is typically in the lines of performing real-time control by steering 

the processes using real-time data and analysis. 

2.2.2 Stages of Digital Twinning 

According to the study of Csaba Ruzsa in 2021, there are four types (development stages) of a Digital Twin. As a Digital 

Twin progresses through the different developmental stage the level of interaction, control and real-time simulation 

increases.  

The four developmental stages are: 

• Testing model: where a virtual copy of the physical asset exists but no real-time data is fed into the models.  

• Surveillance model: where real-time data from the physical asset is fed into the Digital Twin; however, the 

digital version only provides a supervisory role and does not interact with the physical asset. 

• Control Twin: an interactive connection where the physical asset provides data to the Digital Twin and the 

Digital Twin has a controlling function within the physical asset.  

• Simulation Twin: where data is provided by the physical asset and simulations of changing circumstances 

are projected within the Digital Twin. 

2.2.3 Types of Digital Twins 

There are a number of different varieties of Digital Twins. The type required depends on the sector and the expected 

applied usage of the Digital Twin (Castro-Gama et al., 2020; Jones et al., 2020; Liu et al., 2021). 

• Product Twin: in a Product Twin the physical asset is something that has been manufactured, such as an 

automobile, aircraft turbine or a water pump.  

• Process Twin: a Process Twin is where the Digital Twin emulates a process and monitors the behaviour of 

the system such as a water distribution network or manufacturing assembly.  

• Performance Twin: a Performance Twin is a combination of a Product Twin and a Process Twin where the 

Digital Twin monitors the individual asset components and the overall system health. In some situations, 

this monitoring will allow the application of predictive maintenance. 

2.2.4 Benefits of Digital Twins 

The benefits of using Digital Twins have been acknowledged by both scholars and practitioners (Kockmann, 2019; Qi 

et al., 2021; Lim et al., 2020; Negri et al.,2020). The benefits include, but are not limited to, streamlining processes, 

downtime reduction, decreasing lead times (Perno et al., 2022). In the study of Lim et al. (2020), a reference 

framework for Digital Twin development was applied to a case study of a tower crane model. Here, the Digital Twin 

was able to demonstrate simulations which resulted in a reduction in operator workload, run risk simulations to 

assess damage to equipment and to provide data to be used in future projects. 
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2.2.5 Barriers to Digital Twins 

When looking to use Digital Twins for a process system, such as water treatment, there is little literature on the 

implementation for Digital Twins of this nature. The research previously published is fragmented across different 

industries and topics. Due to the immaturity of research in combination with the intrinsic complexity of various 

production processes, it is difficult for companies to make decisions upon the appropriate approach for Digital Twin 

implementation (Kockmann, 2019; Perno et al., 2022). 

According to the literature review of Perno, Hvam and Haug (2022), 79 different articles pertaining to Digital Twin 

development were analysed and a description of the barriers facing the implantation of Digital Twins is presented in 

Table 1. Overall, the most common barriers cited are those caused by issues in system integration, security and 

system performance. 

Table 1 List and categorization of Digital Twin barriers (from Perno et al. 2022) 

 

2.2.6 Digital Twins in industry sectors 

The first practical implementation of Digital Twins was completed in the aerospace industry (Negri et al., 2017), but 

rapidly spread to other industries including construction, healthcare, automotive, education, meteorology and 

building science (Perno et al., 2022). Digital Twins have also historically been used in the oil and gas industries. These 

industries have built upon traditional simulation techniques and added the applications for real-time simulation 

(Scheifele et al., 2019). 
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2.2.7 Social constraints of Digital Twins 

For the implementation and utilisation of Digital Twins organisations need to be aware of the social applications, 

constraints and barriers. Digital Twins are powerful tools that can digitally reproduce the relationships and 

connections between the people, the process and the economics of the system. This can be seen in the 2020 study 

of Castro-Gama et al. where cellular phone usage data was employed to look at customer mobility within a water 

network distribution system area. This type of Digital Twin incorporated real time social data showing the connection 

between society, economy and the water distribution process (Castro-Gama et al., 2020).  

Moreover, Digital Twins are powerful tools, but they require constant input from the system. In the early stages of 

implementation this means data validation is vital from experts within the company. The practical knowledge of 

system operations on a day-to-day basis is embodied in the employee. Additionally, for successful implementation 

the management of the organisation needs to be able to trust that the digital reproduction has an adequate level of 

accuracy – particularly when implementing more highly developed types of Digital Twins (i.e. Control or Simulation 

Twins). 

2.2.8 Legal constraints of Digital Twins 

Due to the immaturity of research surrounding Digital Twins, little has been published about the legal restrictions 

and environment in which Digital Twins need to operate. Recently, research has been published within the medical 

field around the use of personal information as a type of Digital Twin of a person that is created by a doctor (Teller, 

2021). 

For process systems, one of the principal advantages to be gained from implementation is the monitoring and analysis 

of data for regulatory compliance in a standardized fashion. The Digital Twin can be used to simulate impacts on the 

environment to estimate irregularities in the system as well and expansion of the system in the future. 

Standardization between similar processes further allows for the easier sharing of information between organisations 

(Castro-Gama et al., 2020; Perno et al., 2022; Teller, 2021). 

Notwithstanding this, there are some major legal barriers and concerns that also must be addressed. One major fear 

surrounds cyber-security. Control and Simulations Twins continually feed information between the Twins. Therefore, 

monitoring data use rights to protect data privacy needs to be considered in addition to ensuring the robustness and 

integrity of the Digital Twin itself and to ensure that there is no opportunity for the physical twin’s operation to be 

compromised by external actors (Perno et al., 2022; Teller, 2021). 

2.3 Architecture 

This part of the literature review is intended to examine the broader architectural context of Digital Twins as a virtual 

representation of a physical object or system that enables real-time monitoring, simulation and analysis of its 

performance. The Digital Twin is created by gathering and integrating data from various sources such as sensors, 

simulations and other data-producing systems. This data is then used to generate a dynamic, digital model of the 

physical object or system that can be analysed and optimized. The Digital Twin can be used in various industries such 

as manufacturing, transportation and healthcare to improve decision-making, reduce downtime and enhance 

customer experiences. 

Industry 4.0 is an umbrella term frequently used to set the scene for the development of Digital Twins.  This describes 

the “fourth industrial revolution” spurred by digitalization to incorporate communication and information 

technologies and refers to the integration of physical and digital technologies (such as IoT, robotics, artificial 

intelligence and cloud computing) into industrial processes and the manufacturing sector. The principal goal of 

Industry 4.0 is to create a smart and connected industrial environment that enables increased efficiency, flexibility 

and customization in outputs: resulting in enhanced productivity and improved customer experiences. 
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2.3.1 Nomenclature 

A lack of standard terminologies and practices in the implementation of Digital Twin architectures are seen as a major 

challenge to the realization of the technology's full potential. Partly this is down to the literature on Digital Twin 

architectures being dominated by application- and/or technology-specific architectures that use different 

terminologies for components, hindering the identification of commonality in frameworks and making it difficult for 

practitioners in the field to find appropriate guidance. 

To this end, Steindl et al. (2020) propose a generic architecture for implementing Digital Twins that conform with the 

information technology layers of the Reference Architecture Model for Industry 4.0.  They report that the design and 

implementation of Digital Twins has attracted considerable attention in recent years, especially in the industrial 

energy systems domain, as it can facilitate flexible and optimized operation and help the industry transition to 

renewable energy sources. However, as in many fields, implementations of Digital Twins are often application-

specific, lacking general architectural concepts and their structures and concepts vary. To address this issue, they 

propose a Generic Digital Twin Architecture which is aligned with the information technology layers of the Reference 

Architecture Model Industry 4.0 (RAMI4.0) to ensure a common naming and understanding of the proposed 

architectural structure and how it relates to the underlying concepts. Their Digital Twin is technology-independent 

and based on the 5D-Digital Twin concept, which has been evaluated based on a prototypical proof-of-concept 

implementation. Ontologies are used to build the foundation for the Shared Knowledge base of the Smart Data 

Service, facilitating interoperability which is demonstrated with an example of the generic architecture being applied 

to a Digital Twin representation of a Packed-Bed Thermal Energy Storage system. 

The underlying Industry 4.0 Reference Architecture Model for their approach is a framework that defines the key 

components, their relationships and the flow of data and information between them in an Industry 4.0 environment. 

The reference architecture model provides a common language and understanding for organizations and 

stakeholders to build and integrate Industry 4.0 solutions and technologies which are useful in defining an 

appropriate nomenclature for Digital Twin-based applications. 

The reference architecture model typically includes the following components: 

• Physical devices and machines: These include sensors, actuators and other components that make up the 

physical assets in an Industry 4.0 environment. 

• Edge devices: These are responsible for decentralized processing and filtering the data generated by physical 

devices. 

• Network infrastructure: This includes the communication and data transport systems that enable the 

exchange of data between physical devices, edge devices and the cloud. 

• Cloud infrastructure: This includes the centralized/distributed data storage, processing and analysis systems 

in the cloud. 

• Applications: These are the software applications that enable data analysis, process control and decision-

making in an Industry 4.0 environment. 

• User interfaces: These provide a way for users to interact with Industry 4.0 systems and technologies. 

Nwogu et al. (2022) also identify the lack of standardization in the nomenclature as an issue.  To address this problem, 

they propose a requirement-driven, technology-agnostic Digital Twin architecture consisting of standard components 

traceable to the definitions, requirements and mandatory functionalities of Digital Twins captured in existing 

literature. The proposed architecture can be applied to various fields and use cases based on their respective needs 

and seeks the standardization of Digital Twin architectures by matching the components of the architecture to the 

core Digital Twin requirements. Their proposed architecture is affected by limitations such as the relationship 

between the Digital Twin requirements and their implementation within an existing information system and 

additional requirements that may arise from specific manufacturing or service systems. 
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2.3.2 Composition 

A review paper by Adamenko, et al. (2020) investigates the methods used to design Digital Twins in the literature, 

noting that despite the widespread interest and emerging importance of Digital Twins in industry the technology has 

not yet fully established itself, partially due to the lack of clarity on how these should be built up. Digital Twins can 

offer benefits such as consistent documentation, better starting points for simulations and optimizations and the 

possibility of improving preventive maintenance. The authors propose two different approaches that can be followed 

when creating a Digital Twin, either data-based or system-based and conclude that a combination of both approaches 

is most beneficial.  

This approach is mirrored by Meierhofer, et al. (2021) who describe a novel conceptual model for integrating Digital 

Twins in industrial service ecosystems to facilitate the use of Decision Support Systems. Their model uses a semantic 

ontology approach to interlink Digital Twins of equipment and processes in the ecosystem, enabling the development 

of a blueprint for implementors to create their own Digital Twin-based services. The hierarchical-modelling approach 

breaks down complex decision-making problems into sub-questions and individual Digital Twin components, 

systematically interlinking them using ontologies. The KARMA language is used to describe Digital Twins and generate 

ontology models automatically. The paper concludes by presenting a case study of a manufacturing SME to illustrate 

the implementation of the model, showing how different operational states in the ecosystem can be simulated as 

needed to support decision-making. This presents a theoretical concept for implementing Digital Twins on the level 

of service ecosystems and integrating Digital Twins based on a unified ontology, which can be used to create value 

for decision support. 

A similar ontological approach to decomposing the constituents of a Digital Twin is proposed by Fujii, et al. (2022) 

who have proposed a new approach based on a Digital Twin model that incorporates real-time data collected by IoT 

sensors to improve machine learning methods. The Digital Twin household ontology model includes topological and 

behavioural aspects of accommodation, as well as metadata that can be used with energy consumption forecasts by 

other systems. Household metadata is modelled in an ontology to facilitate the integration of real-time monitoring 

and prediction information with new interfaces, such as personalized conversational agents and dashboards for 

improving personalized demand response suggestions and engaging consumers in the transition to renewable 

energy. 

A predominant theme in Digital Twin architecture design is the concept of structuring the system into tiers.  At its 

most basic this tiering is split into three levels, representing the Physical space, the Virtual space and a tier between 

them to exchange information and control messages. 

 
Figure 1 Functional elements of a Digital Twin architecture (after Steindl, et al. 2020)  
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The lack of a comprehensive architecture covering the necessary components of a Digital Twin to realize various use 

cases is further noted by Ashtari Talkhestani, et al. (2019). This paper proposes an architecture for a Digital Twin and 

an Intelligent Digital Twin and their required components to enable use cases such as plug and produce and predictive 

maintenance.  This approach adopts a tiered architecture along the lines of that used by Steindl, et al. (2020) in Figure 

1 above – although lacking the standardized nomenclature. The authors propose that a Digital Twin requires three 

main characteristics: synchronization with the real asset, active data acquisition from the real environment and 

simulation ability.  Their proposed architecture for a Digital Twin, as part of a Cyber Physical Production System, 

includes several methods such as the Anchor-Point-Method, a method for heterogeneous data acquisition and data 

integration and an agent-based method for the development of a co-simulation between Digital Twins. The Anchor 

Point Method synchronizes multi-disciplinary models of a Digital Twin, while the cloud-based approach for data 

acquisition and data integration using semantic technologies acquires operational data to enable the use of machine-

learning to detect anomalies and predict failures. 

Chaux, et al. (2021) look at the need to achieve food security and increase production of agricultural systems while 

reducing resource usage. To do this they propose Digital Twin and Controlled Environment Agriculture (CEA) systems 

that can offer the potential to optimize productivity and improve food security. A Digital Twin architecture for CEA 

systems that utilizes simulation software to optimize climate control strategies and crop management is presented 

which demonstrates a specific application of the tiered-style architecture similar to Figure 2. The architecture was 

applied to a prototype greenhouse and validated through the assessment of communication latency. The proposed 

architecture can be used by companies to retrofit their CEA systems with Digital Twin functionality and by universities 

to investigate automation in agricultural laboratories - including the application of optimization through heuristics 

and algorithms. 

Combining the concepts of the tiered architectures considered here permits us to formulate a general tiered 

architecture for a Decision-Support aware Digital Twin as seen in Figure 2.  As can be seen, the architecture retains 

the discrete tiers for the Physical and Virtual entities along with those for the Informational and Functional 

components.  It formalizes the Communication tier as a separate entity which represents the boundary between the 

IT (Information Technology) and OT (Operational Technology) constituents of the system.  This, ordinarily, will include 

some form of demilitarized zone (DMZ) to keep the OT environment of the Physical Entity at arm’s length from the 

data warehousing and processing of the Informational tier.  In addition, the generalized architecture proposes a 

separate Presentation tier for applications facing the wider business including dashboards. 

 
Figure 2 Generalized Architecture tiers for a Digital Twin facilitating Decision Support 
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2.4 Model requirements 

An integral component for the implementation of a Digital Twin is the development of models. Models are alternative 

representations of a given a real-world system or installation. Through modelling, knowledge and information of a 

given task can be encoded, where the knowledge is acquired from prior experience and information gained from the 

collection of processed data of a given system (Therrien et al., 2020). Typically for water treatment systems, the 

representation of a system is achieved through mathematical equations which include the temporal and spatial 

relationships between different variables that explain the processes. The modelling of water treatment systems has 

over the years been considered beneficial for water professionals in aiding in the design of new plants and to optimise 

the operations and maintenance of existing plants - supported by predictions to estimate the future behaviour or 

state of a given treatment system (Therrien et al., 2020). 

In practice, with respect to drinking water treatment (DWT), the development of models that are either incorporated 

into a Digital Twin or are themselves considered to be a Digital Twin, have been seldomly reported and this application 

can be considered to be still in its infancy. However, it must be considered that Digital Twins, while gaining popularity 

as a concept, have not widely adopted a standardised terminology. As a result, there have been many models or 

modelling studies conducted for various DWT processes which can be considered to be a form or a component of a 

Digital Twin, without explicitly mentioning the term. In the handful of studies reported that do mention Digital Twins, 

either a discussion has been undertaken at a conceptual level (e.g. Curl et al., 2019) or Digital Twins have been 

developed to investigate specific challenges such as anomaly detection and resilience to cyber-attacks (Patriarca et 

al., 2022; Wei et al., 2022). In the discussion of Curl et al. (2019), Digital Twins have been stated to be the “next big” 

technological advancement for water utilities since the introduction of Supervisory Control And Data Acquisition 

(SCADA) systems. They rationalise that Digital Twins essentially are a central repository for information and provide 

a basis to analyse the treatment facility operations and performance. In such a concept, two principal forms of Digital 

Twins were identified, one being termed as a ‘facility Digital Twin’ and the second being the ‘flight simulator’. The 

facility Digital Twin was explained as a means to conduct, for example, dynamic simulations of the hydraulics, water 

quality and controls of a DWT plant prior to the facility being built - thereby aiding in the designing and commissioning 

process. The flight simulator model was considered as a mechanism for operators to simulate failures or test 

optimisation strategies of their facilities to be considered for implementation or to be of assistance in operator 

training. However, a current gap that can be identified from such a discussion is whether such models are capable of 

providing simulations and predictions in (near) real-time. This leads to the question as to whether such models should 

be considered a Digital Twin to begin with.  

A clear requirement to implement a Digital Twin for DWT is the availability of a model, be it for a specific asset, a 

facility Digital Twin, or a flight simulator. The model should be capable of accurately representing and mimicking the 

treatment processes when input with a certain initial state (i.e. controls, boundary conditions, environmental and 

operating conditions). The modelling of different DWT processes can be largely categorised into three approaches, 

based on the technology utilised, data availability and the complexity of the processes modelled (Matheri et al., 2022; 

Therrien et al., 2020): 

• mechanistic modelling; 

• data-driven modelling; 

• hybrid modelling. 

 

In sub-sections 2.4.1, 2.4.2 and 2.4.3 below, individual reviews of the different schools of modelling are discussed 

while restricted the subject to source water quality and some examples of key DWT processes that are of interest 

and importance to the Dutch and Flemish water sector such as coagulation/flocculation, softening and membrane 

processes (such as Reversed Osmosis and Ultra Filtration). In 2.4.4, the implications and decision-making processes 

that water companies can use in deciding which model type to consider for a given DWT process are highlighted.   
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2.4.1 Mechanistic Models for DWT 

Mechanistic models for drinking water treatment are a mathematical representation of the underlying physical, 

chemical and biological processes that occur during drinking water treatment. Mechanistic models provide a 

framework or a system of equations, that are not data dependent but are based on implied knowledge or hypothesis 

about a specific system (Aliashrafi et al., 2021). Mechanistic models provide predictions of certain physical and/or 

chemical behaviour of the system under different conditions. Typically, the calibration of mechanistic models require 

the estimation of various model parameters, such as rate constants, hydraulic properties, etc. Predominantly, 

mechanistic models utilise mass-balance based systems of equations that predict the fate of certain water quality 

parameters, based on the input operating and environmental conditions. The mechanistic modelling of DWT 

processes is specific to the various treatment units that are seen within DWT installations. The coupling of various 

mechanistic models together can result in an integrated model, where the outputs of a specific unit, which could be 

the concentration of certain parameters and the flowrate of the output water would serve as the input to a 

subsequent unit. This has been highlighted as an example in Figure 3.  

The modelling of individual treatment units is governed by the process equations that are applicable to the given 

system. For coagulation and flocculation, it is a three-stage process, consisting of rapid mixing, coagulation of the 

colloidal particles and flocculation. The key process in this treatment is destabilisation and hence that is a 

phenomenon that requires accuracy in a predictive model (Akinmolayan, 2017). Destabilisation is the process in 

which particles that are in a stable suspension state are aggravated or modified to increase the probability of their 

inclination to attract to one another. The mechanistic modelling of this process comes down to accurately 

representing the hydrodynamic forces between particles, particle size distribution and the coagulant dosing. 

 

Figure 3 Individual mechanistic model connections to form an integrated model for DWT (after Akinmolayan, 2017) 

These phenomena can be described based on physical chemistry-related equations that have been researched 

extensively. The particle size distribution and aggregation process can be modelled as a population balance model 

(Jeldres et al., 2018). A soft sensor for the coagulation-flocculation process is currently being developed as part of a 

BTO Bedrijfsonderzoek project called Softsensor flocculatie. However, the interacting chemical and physical 

processes in coagulation and flocculation make it a challenging process to accurately model. Turbidity, which is the 

primary indicator of process performance, is not only influenced by the content of suspended solids, but also the 

composition, particle size, shape and impurities in water, which makes it difficult to accurately predict (Li et al., 2021).  

Another key process is softening, which involves the removal of calcium concentration (CaCO3) through the dosing 

of chemicals such as sodium hydroxide (NaOH), which promotes the precipitation of the calcium carbonate due to 

the rise in pH. The modelling of the softening process involves the use of chemical and mass balance equations that 

can model the crystallisation of CaCO3, based on operating conditions, chemical dosage and by solving the carbonic 

acid equilibrium set of equations (van Schagen et al., 2006). For membrane filtration, a wide variety of theoretical 

mechanistic models have been developed. Primarily, the models have been developed to predict and diagnose 

membrane fouling and can be valuable as they can assist in optimising the fouling removal through backwashes and 

other preventive methods. Furthermore, they can also help establish interactions and potential relationships 

between different filtration variables (AlSwaftah et al., 2021). For Reverse Osmosis (RO) systems, predictive models 

have been developed to simulate the development of membrane fouling over time. Such models use fouling 

potential, i.e., the increase in membrane resistance due to a unit volume of permeate passing through the 

membrane, as a concept for predictions (Chen et al., 2004). In this study a strong interaction between permeate flux 

https://kwrwater.sharepoint.com/sites/BTO/SitePages/Softsensor-flocculatie.aspx
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and membrane fouling was seen. Duclos-Orsello et al. (2006) developed a model that accounted for three classical 

fouling stages – 1) pore constriction; 2) pore blockage; 3) cake formation. Other versions and theoretical formulations 

of membrane fouling have also been developed and further for other membrane-based processes (Chang et al. 2011 

; Mondal and De, 2010). 

Mechanistic models can be challenging to implement as they can rely on design parameters that are difficult to 

measure (Aliashrafi et al., 2021). Furthermore, many mechanistic models for DWT are typically theorical models and 

mathematical formulations that have been validated under simple conditions and laboratory-based measurements. 

The complexity of feed water to full-scale drinking water treatment plants prevents the operationalising of such 

theoretical models that struggle to make good predictions (Li et al., 2021). Therefore, mechanistic models have 

various disadvantages and can potentially be difficult to utilise in Digital Twins due to the need for solving complex 

equations and a lack of accuracy. However, these white-box models can still be highly beneficial and useful to perform 

scenario analysis and aid in decision-making that requires a high level of understanding of the processes. 

2.4.2 Data-driven Models for DWT 

Data-driven models map inputs onto specific outputs without considering the real processes underlying the 

relationship. As a result, with no prior knowledge being utilised, such models are fully reliant on the data being used 

for their development (Therrien et al., 2020). Like many other domains such as computer vision and health care, 

Artificial Intelligence (AI) and the application of data science have demonstrated their critical value to its application 

in the drinking water treatment sector (Aliashrafi et al., 2021). This has been made possible with high resolution 

online sensor data of key process parameters now being available. Such data-driven models have been considered 

to be effective in embedding complex non-linear relationships that can be found solely within the data without 

needing to explicitly define the relevant features, relationships or variables, for the prediction of certain outputs 

(Aliashrafi et al., 2021; Li et al., 2021; Therrien et al., 2020).  

For the data-driven modelling of DWT processes, supervised and unsupervised learning models have been utilised. 

In supervised learning, data-driven models conduct predictions using water quality data. Such predictive models 

utilise historical data and learn the underlying relationship to make accurate predictions for a given label or target 

value (Aliashrafi et al., 2021). With supervised predictive models, the tasks performed could be of the type of 

regression or classification. Regression models provide predictions of continuous numerical values based on a 

numerical input. Classification models provide discrete predictions, by assigning a category to each sample 

considered (Aliashrafi et al., 2021). An example of a classification task using water quality data could be the use of 

different water quality measures for the prediction of a water quality index (Abba et al., 2020). For supervised 

learning models, be it for regression or classification, labelled data is required. However, generating large amounts 

of high-quality labelled datasets can be costly and challenging (Aliashrafi et al., 2021). As a result, unsupervised 

learning modelling methods, such as clustering, are also considered. Clustering algorithms allow one to identify 

patterns or group (cluster) subsets of samples that tend to have similar behaviour (Aliashrafi et al., 2021). For 

example, by inputting water quality data, techniques such as K-means clustering can be used to identify and cluster 

different states of a water treatment process, thereby allowing one to evaluate the reaction of the treatment process 

to different water quality conditions (Juntunen et al., 2013). Additionally, data-driven models are widely used for the 

purpose of dimensionality reduction, which transforms high-dimensional inputs to a lower-dimensional 

representation. Common methods used include Principal Component Analysis (PCA) and Self-Organised Maps (SOM). 

Such techniques can also help improve the predictive performance of data-driven models such as artificial neural 

networks (ANNs) by reducing the number of inputs (Aliashrafi et al., 2021).  
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Figure 4 AI techniques utilised for the modelling of drinking water treatment (from Li, et al. 2021) 

In Figure 4, a summary of the AI techniques used in the modelling of DWT processes is illustrated (Li et al., 2021). As 

can be seen, different Machine Learning (ML) techniques such as ANNs, Deep learning (DL) models, Support Vector 

machines (SVMs) and Random Forest (RF) models are commonly used, with ANNs being the most utilised. The choice 

of techniques published have been reported based on the stage of the DWT that was modelled. 

 

Figure 5 Articles that published ML techniques used for modelling water quality for different stages in DWT (after Aliasharfi, et al. 2021) 

In Figure 5, as reported by Aliashrafi et al. (2021), neural networks are most common technique used for predicting 

water quality for various stages in DWT, followed by SVMs and decision tree-based models such as RFs. Based on the 

data-driven modelling of DWT processes reported in the literature coupled with processes that are of importance to 

the Dutch and Flemish water sector, some examples of using the aforementioned techniques are highlighted below. 
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For source water, data-driven modelling is primarily used for predicting the water quality, from a physical (e.g. odour), 

chemical (toxic contaminants) and microbial (such as algae blooms) perspective. Interestingly, AI technologies have 

an advantage in being able to predict complex water quality parameters using water quality indicators that are easily 

measured  (Li et al., 2021). An example of this is the prediction of Arsenic in groundwater with principal component 

ANN (PC-ANN) using water quality indicators such as pH and electrical conductivity (Cho et al., 2011). In their 

investigation, Chen et al. (2020) demonstrated that the use of big data significantly enhanced the performance of 

their water quality prediction models, which included various machine learning approaches. Their study involved 

training models, such as Random Forest (RF) and Deep Cascade Forest (DCF), using parameters like pH, dissolved 

oxygen (DO) and NH3-N to predict compliance with governmental regulations regarding water quality standards. 

Interestingly, as they expanded their datasets, they were able to streamline the model inputs by focusing on the most 

critical parameters and simplifying the model structures. Consequently, the availability of a substantial dataset is a 

crucial consideration when exploring different machine learning techniques for water quality predictions. 

For coagulation and flocculation processes,  AI techniques are primarily used to predict the turbidity of the effluent 

or the amount of coagulant dosing required to achieve a given effluent quality (Li et al., 2021). To this end, the use 

ANNs have been widely used. For example, Kennedy et al. (2015) trained and tested four variations of ANNs, such as 

a Multi-layer Perceptron (MLP), Radial Basis Function (RBF) network and a Generic Regression Neural Network 

(GRNN), to predict the turbidity and dissolved organic matter (DOM) removal due to coagulation in a full-scale WTP.  

The input to the ANN models included the alum and other chemical dosing concentrations, turbidity, alkalinity, pH, 

hardness and temperature or the raw water and the settled turbidity levels itself. Similarly, Kim & Parnichkun (2017) 

trained an MLP, adaptive neuro fuzzy inference system (ANFIS) and a GRNN to determine the coagulant dosing using 

8,760 historical datasets with hourly resolution from a full-scale WTP. The MLP and ANFIS models met the proposed 

validation conditions, with the MLP performing well during high turbidity zones over 20 NTU and the ANFIS providing 

consistent and better results at lower turbidity zones where there is higher disorder of coagulant dosage data. The 

GRNN model was concluded to fail in making accurate predictions during validation. Griffiths & Andrews (2011) 

developed two ANN models, one to predict the settled water turbidity and the second to predict the optimal alum 

dosage for a full-scale coagulation installation in a WTP. In both models, physical properties and quality of the raw 

water were used as input (such a turbidity, pH, conductivity and temperature) as well as the chemical dosing levels. 

For both models, average R2 values were achieved, ranging between 0.63 to 0.79 and 0.78 to 0.89, respectively. In 

contrast, better results were also achieved using ANNs by Maier et al. (2004), where multiple ANN models were 

developed to predict multiple outputs that are controlled by the addition of alum, such as the treated water turbidity, 

colour and ultraviolet absorbance at a wavelength of 254 nm. 

For membrane filtration processes, data-driven models have primarily been employed to analyse and predict 

membrane fouling behaviour, as well as to assist in membrane preparation and cost optimization. Many studies have 

been conducted to predict membrane fouling. For instance, Piron et al. (1997) utilized artificial neural networks 

(ANNs) and a semi-physical model that combined prior knowledge with a neural network to compute unknown 

parameters. Predictions achieved from the semi-physical model were more accurate, which was hypothesized to be 

due to the inclusion of mass balance equations. Additionally, the prediction of transmembrane pressure (TMP) and 

backwash efficiency using various data-driven techniques has been attempted. Delgrange et al. (1998) developed an 

ANN to predict TMP for an ultrafiltration pilot using input data on operating conditions and water quality parameters. 

This pilot produced drinking water by ultrafiltration (UF) of natural water. The neural network model accurately fit 

experimental data. In a study by Delgrange-Vincent et al. (2000), a back-propagation ANN (BPANN) model 

successfully predicted TMP for a UF pilot for both short-term and long-term processes. The study found that input 

parameters such as permeate flow rate, filtration time, turbidity, dissolved oxygen (DO), pH, ultraviolet (UV) intensity, 

backwash pressure and chlorine concentrations were the most significant. The model's good performance over the 

long term suggests that such models can be suitable for control, even in cases of varying water quality changes. 

Another interesting case was the study conducted by Shetty et al. (2003), where ANNs achieved high-accuracy 

predictions for permeate water quality during municipal nanofiltration for various source waters, membrane types 
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and operating conditions, demonstrating their generalization capabilities. More recently, Corbatón-Báguena et al. 

(2016) investigated the importance of various data preprocessing steps to improve the fit of ANNs in predicting 

permeate flux decay in UFs. They also compared the data-driven model to Hermia pore-blocking models and 

concluded that the performance of both models was comparable. In the field of deep learning, convolutional neural 

networks (CNNs) were used to predict the increase in membrane fouling in nanofiltration and reverse osmosis (Park 

et al., 2019). The model was trained for image recognition using high-resolution dirt layer images and it provided 

promising results. 

The use of artificial neural networks (ANNs) has found significant application in drinking water treatment (DWT) 

processes. This popularity can be attributed to their relatively easy training and their ability to rapidly capture the 

complex, non-linear relationships between input parameters related to water quality and operational factors, 

ultimately leading to target variable predictions. Additionally, neural networks excel in forecasting tasks, making them 

valuable for predictive decision support and control. In this regard, the use of deep learning models namely, recurrent 

neural network (RNN) type of models such as gated recurrent unit (GRUs) and long shot-term memory (LSTM) has 

shown great promise in the water sector as well. These models can be instrumental for making informed decisions 

and implementing predictive control strategies. However, a caveat of such models is the vast amount of data 

required. This explains the limited number of studies utilising such models for modelling DWT processes, but the field 

is rapidly evolving. Another caveat that such models face is overfitting to the training data. These models can then 

face challenges in performing sufficiently under conditions are not prevalent in the training dataset. This can be a 

crucial issue in rapidly changing environments. Furthermore, decision tree-based models such as RF and XGBoost 

offer valuable insights through their inherent ability to assess feature importance. They help in understanding the 

relevance of input parameters when making predictions, making them more interpretable compared to neural 

networks. They serve as robust tools for gaining a deeper understanding of complex processes by converting raw 

data into actionable process information. In summary, there remains considerable potential in leveraging data-driven 

methods for modelling DWT processes, particularly given the continuous growth in data collection. These models 

play a pivotal role in the development and application of Digital Twins for water treatment systems.  

2.4.3 Hybrid Models for Water Treatment 

Mechanistic models are usually mathematical in nature, based on physical or chemical laws that govern the intricate 

relationships between input and output variables. While these models leverage extensive domain knowledge 

accumulated over years, they remain approximations of reality. This approximation is due to the inherent limitations 

of incomplete knowledge and the inherent complexity of certain processes, leading to the need to make certain 

assumptions which introduces a degree of bias (Jia et al., 2022). Mechanistic models can also be empirical in nature, 

where relations between variables are described based on elementary physical understanding of the process. This 

results in less complex mathematical formulations. In either case, these models frequently incorporate multiple fine-

tuning parameters, which could be the physically meaningful parameters in the case of purely mechanistic models 

or ad-hoc parameters in empirical models. Calibrating these parameters often entails an extensive search through a 

vast parameter space to pinpoint the combination that yields the best-performing model on the training data. 

However, this can lead to high computational costs during calibration and also when making predictions on unseen 

data, which hinders its usage in real-time and dynamic system modelling, typically required for control purposes. 

On the other hand, the use of data-driven or ML models has gained rapid momentum, owing to their proven success 

in various commercial applications including computer vision, natural language processing. ML models are widely 

being considered a potential alternative to mechanistic models, particularly in the scientific community. Therefore, 

a substantial amount of research and innovative full-scale applications have focussed on utilising data-driven models 

to address specifical challenges related to DWT processes, particularly when there is sufficient data available. 

However, such models do possess certain limitations and caveats as well. The “black-box” nature of data-driven 

models results in them lacking transparency and making it difficult to understand the inner workings of the model 

responsible for generating predictions. Furthermore, DWT processes are often characterised by data sparsity. 
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Therefore, ML models trained on DWT process data can underperform, particularly when used to solve a supervised 

learning problem, which require a great deal of labelled data. Furthermore, the effectiveness of ML models is greatly 

dependent on its capabilities of learning complex patterns in data. This is simply conducted by identifying statistical 

relationships between the input and the target variables of interest, without regarding any form of physical and 

chemical laws. Such a training process quite often leads data-driven models to overfit on the training data provided. 

The identification of ML models that can successfully generalize across different scenarios remains an ongoing 

challenge. 

To address the shortcomings that are prevalent in both schools of modelling, hybrid modelling, that combine the 

mechanistic or first-principles models with data-driven models, is a promising concept being considered at a scientific 

and commercial level.  A common and sufficiently investigated approach is through residual AI modelling, where the 

data-driven models are trained to predict the errors made by the mechanistic model when comparing its predictions 

with observed data (Hvala & Kocijan , 2020; Keskitalo & Leiviskä, 2014; Wan et al., 2018). However, a key limitation 

of such an approach is still the inability of the data-driven models to make predictions that are consistent with the 

physical/chemical laws governing the process (Jia et al., 2022). Therefore, a multitude of other methodologies are 

now being considered in this field. Aspen Tech, in their development of such technology, has made a convenient 

demarcation of the types of hybrid models possible. These are, AI-driven hybrid models, reduced order hybrid models 

and first principles-driven hybrid models (Aspen Tech, 2020).  

AI-driven hybrid models involves using ML models trained on observed data from full-scale plants or experiments, 

while incorporating the first principles and domain knowledge to achieve a more accurate model. This concept can 

involve incorporating a constraint layer as part of the model architecture which represents certain elements of the 

physics (Beucler et al., 2019) or the inclusion of a physical or chemical based loss parameter in the loss function that 

is being optimised during the model training process (Donnelly et al., 2023). In the reduced order hybrid modelling 

approach, an empirical model based on ML uses data provided from simulation runs of mechanistic model for 

training. This is primarily done to develop a surrogate model that can compute predictions more quickly than the 

mechanistic models, while retaining information on the physics. Finally, the first principles-driven hybrid modelling is 

an interesting approach where ML is integrated within an existing mechanistic model to increase the model’s 

accuracy and predictability. This can be done by introducing physics-based equations within the training procedure 

of the ML models, thereby enforcing the data-driven models to also learn the governing principles. An example of 

this method has been showcased by Jia et al. (2022), where equations based on energy conservation and mass 

conservation were incorporated to the training of an LSTM-based AI model. The framework was termed Physics-

Guided Recurrent Neural Network (PGRNN). Another interesting method is to use the technique known as 

Differentiable Parameter Learning (dPL), where the parameterisation of a mechanistic model can be dynamically 

identified by using a neural network, which then feeds the mechanistic model. This eradicates a limitation, 

mechanistic models utilising static values for the fine-tuned parameters, which are now dynamically provided based 

on the system conditions as represented in the input data provided. 

In summary, hybrid modelling can offer numerous advantages. It can enhance the accuracy and interpretability of 

data-driven models, especially when dealing with sparse data. Moreover, it can reduce computational time, making 

mechanistic models suitable for real-time control. Additionally, hybrid modelling can ensure that data-driven models 

adhere to physical and chemical laws, improving their generalizability. It is anticipated that hybrid modelling holds 

great promise for modelling drinking water treatment (DWT) processes, especially in addressing the complexity and 

dynamics inherent in various treatment processes like coagulation and membrane filtration fouling.  

2.4.4 Implications of Model Development for Digital Twin Implementation 

As previously discussed, the modelling of drinking water treatment (DWT) processes can be approached using 

mechanistic models, data-driven models, or a combination of both through hybrid models. The decision regarding 

the type of modelling to employ for a specific DWT process can be complex, as it depends on various factors and the 
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ambitions of the water company with respect to the model usage. In Figure 6, a decision tree has been illustrated to 

inform the decision-making process to choose an appropriate model type to develop for a given DWT process. It is 

anticipated that the fundamental starting point relies on how much high quality data is available. Limited data, 

particularly only from laboratory measurements should directly lead to a choice of using mechanistic models, as such 

models can provide adequate results during low data availability and data-driven models cannot be considered.  

 

 
Figure 6 Decision tree considering various factors that influence the choice of modelling type for a given DWT process 
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In the event of sparse data being available, it is envisioned that hybrid modelling approaches should be considered. 

Hybrid models provide a promising direction where adding the process-based knowledge to the data-driven 

modelling could lead to achieving better performing models even when sparse data is utilised. For cases of high-

resolution data capturing seasonal variations being available, the amount of process knowledge and understanding 

available on the given DWT process, will act as the next ‘gate’. In the case that limited understanding of the treatment 

process is available, it is recommended that a data-driven modelling approach is chosen, considering ML models such 

as neural networks have been seen to work well in identifying complex non-linear relationships between variables, 

even when those processes are not fully known. For the cases of advanced understanding of treatment processes or 

some components of the treatment process is understood, the process complexity must be considered. In the event 

that the treatment process is not complex, mechanistic models can be incorporated. For medium to high process 

complexity, the ambitions of the water company with respect to the level of interpretability from the model results 

are desired will be considered. When high level of interpretability is desired, then mechanistic models must be 

considered. This can be the case when the model would be used for what-if? scenarios, capacity building and training, 

informing operational decisions etc. When low interpretability is desired, data-driven modelling can be used. This can 

be the case when data-driven models are trained on historical operational data and deployed as a control twin, 

providing setpoints for control variables. In this regard, the most important aspect is having a highly accurate model. 

For cases of high interpretability desired for some process components, it is recommended to consider the hybrid 

modelling route, where mechanistic models could be considered for those specific processes. Finally, the amount of 

computational time a model simulation takes can influence the final decision, particularly if the model is intended to 

be used for control purposes. 

Additionally, the decision-tree for model selection follows an iterative and continuous approach. This was largely 

incorporated considering the rapidly growing volumes of data available and advancement in data-driven 

technologies. For data-driven and hybrid models, continuous training is recommended to keep the models up-to-

date with the latest data. This will ensure that the models are (re)trained on process conditions that were not 

previously available in the former training set. This intervention promotes model generalization, reduces overfitting 

challenges, and maximizes data utilization. Moreover, recent data availability can influence updates to model 

selection decisions. Increased data availability could potentially increase the level of understanding of a given process 

and so on, as one traverses through the decision-tree. Furthermore, enhanced data availability may prompt a 

reconsideration of advanced modelling techniques previously dismissed due to data scarcity.  
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3 Roadmap Design 

3.1 Interviews with Leading Organization  

Within the scope of this project, a series of comprehensive interviews were conducted with two prominent water 

companies in the Netherlands, to explore their experiences, strategies and challenges in the development and 

deployment of Digital Twins (Digital Twins). The primary aim of these interviews was to accumulate valuable insights 

for informing the development of the project's roadmap. These insights serve as a foundation for both the project 

team and the broader drinking water sector. 

The interviews encompassed seven key topics: 

1. Definition of a Digital Twin 

2. IT Infrastructure/Architecture 

3. Data Collection and Sensor Deployment 

4. Models Trained/Calibrated within the Digital Twin 

5. Dashboarding and Advanced Visualization 

6. Perception of the Digital Twin within the Organization 

7. Legality and Regulations 

It's important to note that not all questions of the survey were covered during the interviews, owing to variations in 

knowledge and the extent of Digital Twin implementation across organizations. The full list of questions is available 

in Appendix I. 

3.1.1 Key Findings and Insights 

1. Definition of a Digital Twin 

Two water utilities view Digital Twins as a transformative concept and define them as representations of real 

installations and processes, emphasizing real-time data input and predictive capabilities. 

2. Organizational Drivers 

Drivers for Digital Twin implementation include the impending retirement of the workforce, technology 

advancements and environmental considerations. The need to preserve institutional knowledge before 

retirements, improving operational efficiency through digitalization and meeting sustainability goals were identified 

as primary drivers. 

3. Organizational Changes 

Two water utilities have undergone significant organizational changes to adopt digitalization strategies and support 

Digital Twin implementation. Effective strategies involve cross-departmental collaboration and seeking input from 

end-users. 

4. Barriers to Digital Twin Deployment 

Barriers to Digital Twin deployment include a lack of Digital Twin knowledge, data security concerns, IT limitations 

and resistance to change within the workforce. Recruitment of a specialized team for Digital Twin deployment and 

maintenance was suggested as a solution to IT limitations. 

5. IT Infrastructure/Architecture 
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No responses were provided in this category, highlighting the importance of the ongoing project's assessment of IT 

infrastructure and architecture. 

6. Data Collection and Sensor Deployment 

One water utility highlighted their sensor data collection methods, emphasizing standardized sensors and potential 

future additions, such as energy consumption meters. 

7. Models Trained/Calibrated with the Digital Twin 

One water utility discussed the integration of multiple models, covering physical, chemical and data-driven models. 

Integration of models is crucial for comprehensive results and the exploration of AI models for complex processes is 

underway. 

8. Dashboarding and Advanced Visualization 

No responses were provided in this category, emphasizing the need for further evaluation. 

9. Perception of the Digital Twin within the Organization 

One water utility underscored the importance of trust-building and communication for Digital Twin acceptance 

within the organization. Training and selecting the right operational processes were identified as essential for 

fostering trust and achieving positive results. 

10. Legality and Regulations 

No legal issues were reported for Digital Twin implementation in the Netherlands. 

11. Digital Twin Perception 

Both organizations view Digital Twin implementation positively. While one water utility  predominantly uses static 

Digital Twins, newer employees are more inclined to embrace them. The other water utility, regards Digital Twins 

as the only way to achieve their goals, with the control agent showing promise in accurate control actions. 

Notably, the preliminary results suggest that Digital Twins offer significant benefits, particularly in compliance 

reporting, enabling constraint quantification and emissions calculations. 

These interviews have provided crucial insights into the potential, challenges and best practices for Digital Twin 

implementation within the water sector. The knowledge gained is integral to shaping the project's roadmap and 

fostering broader adoption of Digital Twins within the drinking water sector. 

3.1.2 Interview with external Digital Twin Expert 

Background 

The interviewee, an IT professional with expertise in computer science, is actively involved in translating Digital Twin 

concepts into practical strategies for businesses. Their role primarily revolves around IT-related tasks, serving as a 

bridge between management, developers, domain experts and modelers. Their responsibilities include explaining 

the necessary steps for Digital Twin implementation, coordinating various teams and facilitating communication 

between different organizational units. The interviewee maintains a practical perspective that prioritizes the 

successful execution of Digital Twins within a business context. 

The interviewee has prior experience in the water sector, having worked with stakeholders in this field. Although 

they had interactions with water-related projects, it was observed that the industry may not have been fully prepared 

for Digital Twin adoption at that time. 

Organizational Issues 
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The interviewee emphasized that their perspective primarily focuses on the actions required once a Digital Twin 

model is established within an organization. They are knowledgeable about the organizational challenges associated 

with Digital Twin implementation and referenced a 7-step model (Figure 7) designed to guide companies through the 

process. This model assesses the digital readiness of companies and provides guidance for a successful Digital Twin 

integration. 

 

Figure 7 Digital Twin types and usages (Credit: TNO) 

The interviewee also highlighted the challenges of creating a generic roadmap for all water companies. While 

theoretically possible, it often encounters management-related obstacles. They proposed that the development of 

such a roadmap should address three fundamental questions: 

• the purpose and objectives of Digital Twins; 

• the current digital maturity of water companies; 

• identification and resolution of non-technical issues. 

Non-technical issues were noted to be challenging to generalize and are not confined to the water sector. They 

represent a significant portion (3/4) of the digitization process. 

Round Table Discussion/Community of Practice (CoP) 

The interviewee discussed the potential value of organizing round table discussions or Communities of Practice. 

These forums could help bridge the gap between different domains and sectors. An existing cross-sector round table 

was recognized as beneficial for fostering cross-sector learning and addressing problems not necessarily tied to a 

specific domain. 

Non-technical challenges were noted to be prevalent, comprising a significant proportion of the digitalization 

process. The interviewee emphasized the importance of involving management in these discussions and suggested 

that engaging management can be facilitated by providing answers to specific questions, possibly through a series of 

workshops. 
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Creating a Business Case 

A crucial aspect emphasized by the interviewee was the need to establish a clear "business case" for Digital Twin 

implementation. They suggested that quantifying the problem to be addressed, such as understaffing or excessive 

chemical dosing, is essential. The ability to collect and analyse data efficiently plays a vital role in assessing the 

business case. It was pointed out that understanding the problems in the domain processes should take precedence 

before considering Digital Twins as solutions. 

Contextual Data Management 

The interviewee discussed the relevance of data management in the context of Digital Twin creation. Depending on 

the Digital Twin's requirements, data integration, particularly for business context data, may be necessary. For many 

treatment steps, where data integration is minimal, data management may not be a prerequisite. Most of the 

groundwork for operationalizing a Digital Twin is already completed in such cases. Integration of the model with 

sensor data is often the primary focus. 

The interviewee expressed their willingness to contribute to workshops, provided they align with their schedule. They 

emphasized the need for engaging and valuable workshops, as the Digital Twin in question is more of a system-wide 

nature than a product-specific Digital Twin. They view this as an opportunity to provide practical examples and share 

the message with the wider community, which currently lacks robust Digital Twin implementation examples. 

Stakeholders Within Companies 

It was highlighted that discussions within companies should involve a range of stakeholders, including process 

operators, business developers, IT professionals and data specialists. 

The interviewee expressed their interest in participating and supporting the development of the initial roadmap, 

leveraging their experience and insights. 

3.2 Roadmapping Workshop 

After completing the interview, a better understanding of best practices, barriers and risks which can occur in the 

development of Digital Twins was obtained. However, the ways to make a generic roadmap that works for all water 

companies remained a prominent question. Therefore, a workshop was held at KWR with the steering committee of 

this project to  better understand the questions of: What would the digital twins be used for? How digital are the 

water companies to begin with? And what are the non-technical issues that are needing to be solved in the 

digitalisation process? The answers from the steering committee were used to inform the assessment of what the 

water companies need in order to develop digital twins for water treatment. 

3.3 Roadmap 

In this era characterized by rapid technological advancements and the ever-increasing complexities of water 

treatment, the concept of a Digital Twin has emerged as a transformative method for water utilities to understand, 

monitor and optimize their systems and processes. A Digital Twin is more than a digital replica; it is a dynamic, data-

driven embodiment of the physical world, capable of offering real-time insights, predictive analytics and enhanced 

decision-making capabilities. 

As organisations embark on their digitalisation journey, the need for a comprehensive and structured development 

roadmap has become apparent. The roadmap developed through this study not only informs the creation of Digital 

Twins but also ensures alignment with organizational objectives, modelling accuracy, robust data management and 

stringent security measures.  
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This Digital Twin Development roadmap consists of four distinct, yet interrelated paths, each vital to the success of 

the process of digitalisation.   

1. Organisation: The Organisational path encompasses the selection of core teams, the identification of 

stakeholders and the establishment of clear policies and procedures. This path is crucial for ensuring that 

the right people are involved, the project stays on track, brings value and ensures ethical and regulatory 

considerations are met.  

2. Model development: Within the Model Development path, the focus shifts to the creation and refinement 

of the Digital Twin’s mathematical models, algorithms and simulations. With appropriate development the 

Digital Twin will be able to mirror the physical system it represents. Model development is the foundation 

for scenarios, predictions and automation.  

3. Data management & architecture: Clean, accurate and validated data is the heart of a Digital Twin. This path 

involves the integration of diverse data sources real-time data collection and the design of a scalable 

architecture to store, organize and retrieve data. A well-structured data management system ensures the 

accuracy and relevance of the Digital Twin.  

4. Security: The Security path is paramount as there are constant concerns of emerging cyber threats and the 

risk of data leaks. Implementing robust security measures to safeguard both the Digital Twin and the 

associated data is essential. The policy, encryption, transport and secure isolated communication are 

integral aspects of this path.    

Throughout this roadmap, the aim is to foster synergy among these four paths, with each contributing to the 

development of a Digital Twin. By following this structured approach, organizations can create powerful Digital Twins 

and leverage their full potential in enhancing operational efficiency, decision-making and long-term competitiveness.  

In the following sections, we will delve deeper into each of these four paths, providing a comprehensive 

understanding of each of the steps and considerations required along the path. The roadmap has been developed 

based on the integration of all knowledge and insights gathered and described in the previous sections, including 

literature, interviews, workshops, and the associated information analysis 
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Figure 8 Roadmap to a Digital Twin: Overview
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3.3.1 How to use the roadmap 

Through extensive analysis of the needs, desires and challenges of the drinking water utilities this roadmap details 

the necessary actions needed to be taken for the development of Digital Twins.  

The roadmap is read left to right along the four different lanes: Organisational, Model development, Data 

management and architecture and Security. The first step users should take when adopting this roadmap is to decide 

where their organization currently sits on each of the four paths. Users may already be further advanced in one (or 

more) roadmap paths then others. This step will help users realize where the focus should start in order to reach the 

next milestone. The coordination team can then establish their starting point. 

The roadmap is broken down into four milestone with each milestone providing a tangible result that is beneficial to 

the organisation. The fours milestones are: 1. Simple dashboard, 2. Multi-source dashboard with advanced analytics, 

3. Decision supporting Digital Twin and 4. Control Twin. Each milestone also acts as a Go/No-go stopping point where 

the coordination team should assess the needs, desires and challenges for the organization. Additionally, this 

encourages management involvement by showing value to the organization. 

Between each roadmap milestone, it is necessary to facilitate regular interim discussions and assessments. These 

discussions serve as crucial touchpoints where the core team can engage with management to evaluate progress, 

adapt strategies if necessary and ensure alignment with organizational objectives. These interim discussions not only 

enhance transparency, but also enable timely adjustments fostering a dynamic responsive digitalization process that 

increases the likelihood of success.   

Significant emphasis should be placed on the collaboration between the core team and the management team while 

following the roadmap on the route through digitalisation. Each organisation must also select the end point they wish 

to achieve on this roadmap that aligns with their goals and objectives. Although, the roadmap ends with a Control 

Twin, that level of control maybe not be necessary for each organisation. This collaborative effort will ensure that 

the initiative will not only reach its intended destination but also be effectively integrated and utilised by the 

organisation.   

A full risk assessment of the roadmap was developed and can be found in Appendix II. The probability and impact 

levels of the assessment for the identified risks associated with a roadmap step were determined based on expert 

judgements and insights gained from the workshop conducted, as described in Section 3.2. The high and extreme 

risks are highlighted below for each milestone.  

3.3.2 Milestone 1: Development of a Simple Dashboard 

 Initiation of Milestone 1 

The inception of Milestone 1 marks the initiation of the Digital Twin development journey, with the primary aim of 

crafting a straightforward yet powerful dashboard. This dashboard is envisioned to offer an intuitive user interface, 

rendering key data in a comprehensible and accessible format. The fundamental goal is to expedite data-driven 

decision-making by providing stakeholders with a clear understanding of process health and performance. Achieving 

user-friendliness, clarity and ease of use is paramount. 

Commencing Milestone 1 necessitates the assembly of a cross-functional Core Team. Each team member should 

possess a digital mindset and be equipped to tackle the challenges ahead. Notably, the inclusion of an Information 

and Communication Technology (ICT) specialist is pivotal to ensure the dashboard's functionality and its potential 

transformation into a full-fledged Digital Twin. 

Objectives for Milestone 1 

The objectives for Milestone 1 aim for the realization of a user-centric dashboard which encompass: 
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• Creating an intuitive interface that grants stakeholders real-time access to critical data. 

• Enhancing decision-making by presenting data in a concise, user-friendly manner. 

• Facilitating the rapid analysis of trends, patterns and key performance metrics. 

• Prioritizing ease of use to enable both technical and non-technical users to navigate the dashboard 
effortlessly. 

• Empowering stakeholders with actionable insights, enabling well-informed decision-making, progress 
tracking and continuous improvement. 

Cross-Referencing in Milestone 1 

In the roadmap's organizational path, Step 2, 'Value Proposition,' and Step 3, 'Problem Definition,' closely intertwine 

with the model development line's 'Treatment Process Selection.' The value proposition inherently guides the 

selection of the treatment process that the Digital Twin will focus on, aligning the technology's application with the 

organization's core objectives and the specific challenges it aims to address. Simultaneously, the problem definition, 

as detailed in Step 3, aids in the precise delineation of the issues that the Digital Twin will tackle within the chosen 

treatment process. This ensures a synergy between the organizational vision and the model development, setting 

the foundation for a Digital Twin that is not only technically robust but also impeccably aligned with the organization's 

strategic goals. 

Deliverables of Milestone 1 

Upon the successful completion of Milestone 1, efforts will culminate in a comprehensive inventory of sensors and 

pertinent data sources, specifically tailored to address the defined problem. This amalgamation of data will be 

organized into a centralized repository, thereby establishing the foundation for a functional dashboard. 

Risk Mitigation in Milestone 1 

Table 2 highlights the High and Extreme risks associated with the components of Milestone 1. These risks primarily 

revolve around resource constraints, knowledge gaps and the precise definition of the problem domain. To mitigate 

these risks, a judicious approach to team member selection, with an emphasis on expertise, is essential. 

Of particular significance is the ICT policy governing data control and management. Its impact on the project's success 

is undeniable. Therefore, careful scrutiny of existing ICT policies and proactive revision, if needed, in consultation 

with management, is paramount to circumvent potential hindrances to the deployment of specific technologies. 

Table 2 High and Extreme Risks of Milestone 1 

Roadmap Step Risk Description 
Resources 
Impacted 

Probability 
Level  

Impact 
Level 

Risk 
Value 

Overall Risk 
Assessment 

Core team 

selection 

Lack of 
resources 

All 4 Likely 4 Major 16 
Extreme  
(15-25) 

Lack of 
knowledge 

All 3 Possible 4 Major 12 
High 

(8-12) 

Problem 

definition 

Lack of 
knowledge 

All 4 Possible 5 Major 20 
Extreme  
(15-25) 

Treatment 

process selection 

Lack of problem 
definition 

All 3 Possible 4 Major 12 
High  

(8-12) 

Strengthen ICT 

team 

Lack of 
resources 

All 4 Likely 4 Major 16 
Extreme  
(15-25) 



 

 

 

BTO 2023.080 | October 2023  A Roadmap to Creating Digital Twins for Drinking Water Treatment 38 

 

Roadmap Step Risk Description 
Resources 
Impacted 

Probability 
Level  

Impact 
Level 

Risk 
Value 

Overall Risk 
Assessment 

Policy 

Lack of 
management 
buy-in 

All 3 Possible 
3 
Moderate 

9 
High 

(8-12) 

Constraints 

Policy creating 
issues on 
allowability of 
specific 
technology 

All 3 Possible 4 Major 12 
High 

(8-12) 

3.3.3 Milestone 2: Multi-source Dashboard with Advanced Analytics 

Goal for Milestone 2 

The central objective in the development of a multi-source dashboard with advanced analytics lies in the creation of 

a dynamic platform capable of aggregating data from diverse sources and harnessing the power of advanced 

analytical tools, including soft sensors. This milestone aspires to construct a sophisticated interface that facilitates 

the monitoring, analysis and visualization of complex datasets. By doing so, it empowers users to make data-driven 

decisions. The emphasis is placed on the seamless integration of varied data streams, advanced analytical processes 

and the presentation of meaningful information in an accessible manner. This strategic approach aims to endow 

users with profound insights and reinforce their capacity for strategic decision-making. 

A pivotal component of Milestone 2 involves the development of the chosen model for the Digital Twin. This 

encompasses data standardization within the data lake. Notably, a significant focus is directed toward Information 

and Communication Technology (ICT) planning, encompassing secure data transport and encryption methodologies. 

Cross referencing in Milestone 2 

In the Model Development path, Step 4, Development and Step 5, Deployment, form an integral partnership with 

Data Management & Architecture Step 6 Real-time Integration. The Development phase is where the chosen model 

for the Digital Twin takes concrete shape, incorporating advanced data analytics and algorithms. Simultaneously, in 

the Deployment phase, the model is operationalized and integrated into the system, ushering in real-time data 

collection and feedback. This dynamic integration corresponds with the Data Management & Architecture line's focus 

on the organization, storage and accessibility of data. Furthermore, the Real-time Integration aspect ensures that the 

real-time data feeds from the model enhance the Digital Twin's capacity to provide continuous, accurate insights, 

thereby reinforcing the synergy between model development and data architecture. 

Output for Milestone 2 

Upon the successful completion of Milestone 2, the desired outcome is the realization of the chosen model for the 

Digital Twin. This entails the integration of live model sensor fusion. A pivotal aspect within this milestone revolves 

around the secure transport and encryption of data. All data, essential for the Digital Twin, should conform to a 

standardized data format to facilitate seamless integration into the data lake. From the data lake's modelling outputs, 

soft sensors can be automatically integrated into the models in real-time. 

The ultimate deliverable, showcasing value to the organization and persuading management to proceed to Milestone 

3, will be a fully-fledged dashboard drawing from multiple data sources, equipped with (user-friendly) soft sensors 

and statiYustical analytics. 

Risks Associated with Milestone 2 

Table 2 provides a comprehensive overview of the High and Extreme risks associated with Milestone 2. These risks 

encompass a spectrum of challenges, from data security to model development complexities. Mitigating these risks 

necessitates a vigilant approach, encompassing meticulous planning, rigorous testing and the involvement of experts 
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in data transport and encryption protocols. The successful management of these risks is essential for the seamless 

progression of the project. 

Table 3 High and Extreme Risks of Milestone 2 

3.3.4 Milestone 3: Decision Support Twins 

Goal for Milestone 3 

The objective in the development of a Decision Support Digital Twin is to engineer an accurate, real-time and versatile 

Twin. This tool is designed to comprehensively model physical systems, seamlessly integrate real-time data, deliver 

predictive insights, facilitate scenario analysis and optimization, provide an intuitive user interface, ensure robust 

security and scalability, establish a feedback loop for continuous learning and, above all, enhance decision-making 

while optimizing cost-effectiveness and operational efficiency. 

This milestone's achievement hinges on the meticulous refinement and recalibration of the dashboard developed in 

Milestone 2 to transform it into a Decision Support Twin. This transformation involves the deployment of any missing 

hard and soft sensors, alongside the implementation of automated validation processes. The data gathered during 

this process must be securely stored in the corporate data warehouse. 

Output for Milestone 3 

The culmination of Milestone 3 yields a product that aligns with the definition detailed in Section 2.2.3 of the 

Literature Review, thereby realizing a Decision Support Twin. At this advanced level of Digital Twinning, operators 

gain the capability to run system scenarios within the process, subsequently enabling more informed and data-driven 

decision-making. 

Risks Associated with Milestone 3 

Roadmap Step Risk Description 
Resources 
Impacted 

Probability 
Level  

Impact Level 
Risk 
Value 

Overall Risk 
Assessment 

Select type 
Unclear understanding 
of necessary models 

Developers, 
Modellers 

4 Likely 4 Major 16 
Extreme 
(15-25) 

Development 

Incorrect/insufficient 
data 

Developers, 
Modellers 

5 Almost 
Certain 

4 Major 20 
Extreme 
(15-25) 

Lack of sensors 
Developers, 
Modellers, 
Operators 

4 Likely 3 Moderate 12 
High  

(8-12) 

Deployment Run time is too long  
Developers, 
Modellers, IT 

3 Possible 3 Moderate 9 
High  

(8-12) 

Standardization 
Lack of investment in 
data management plan 

Developers, 
Modellers, 
Operators, 
Management 

4 Likely 4 Major 16 
Extreme  
(15-25) 

Model  

Integration 

Data errors creating 
incorrect soft sensor 
data 

Developers, 
Modellers, 
Operators, 
Management 

4 Likely 3 Moderate 12 
High  

(8-12) 

Encryption Cyber-security of data All 3 Possible 3 Moderate 9 High (8-12) 

Transport Cyber-security of data All 3 Possible 3 Moderate 9 High (8-12) 



 

 

 

BTO 2023.080 | October 2023  A Roadmap to Creating Digital Twins for Drinking Water Treatment 40 

 

Table 4 provides an exhaustive analysis of the High and Extreme risks linked with Milestone 3. These risks span various 

challenges, encompassing data security, model recalibration complexities and the potential for system disruptions. 

Attentive risk management and meticulous execution are paramount to the successful advancement of this pivotal 

stage in the project. 

Table 4 High and Extreme Risks of Milestone 3 

Roadmap Step Risk Description 
Resources 
Impacted 

Probability 
Level  

Impact 
Level 

Risk 
Value 

Overall Risk 
Assessment 

Digital Twin usage 
policy 

Lack of acceptance and 
incapability to switch to a 
new way of working 

Operators, 
Supervisors 

3 Possible 3 Moderate 9 
High  

(8-12) 

Ethical 
automation 

Ethics of Digital Twin 
making decisions. Liability  

All 4 Likely 4 Major 12 
High 

(8-12) 

Management  
buy-in 

Results do not prove 
necessity of management 

All 3 Possible 
5 
Catastrophic 

15 
Extreme  
(15-25) 

Refinement 

There has been no proper 
development pipeline 
implemented which 
makes deploying of new 
versions hard 

Developers, 
Modellers 
Data Expert, 
IT 

3 Possible 3 Moderate 9 
High  

(8-12) 

Automated 
validation 

Lack of investment in 
proper infrastructure 
(context broker) 

All 2 Unlikely 4 Major 8 
High  

(8-12) 

Inaccurate models for 
reconciliation 

Data 
Engineer 

2 Unlikely 4 Major 8 
High  

(8-12) 

Corporate data 
warehouse 

Lack of investment in 
infrastructure (databases 
and servers/cloud) 

IT Data 
Manager, 
Management 

4 Likely 
5 
Catastrophic 

20 
Extreme  
(15-25) 

3.3.5 Milestone 4: Control Twin 

Goal for Milestone 4 

The central aim in the development of a control Digital Twin is the creation of a resilient and adaptable tool that 

replicates physical systems and processes, while enabling seamless real-time data integration and control. The 

overarching goal is to facilitate predictive control, optimize system performance, offer a user-friendly interface for 

monitoring and interventions, ensure data security, scalability, compliance with standards and foster continuous 

learning and adaptation. This holistic approach is geared towards enhancing system control and efficiency, while 

simultaneously optimizing cost-effectiveness. 

The attainment of this milestone's goal hinges on advancing model development and introducing model-based 

controls. Furthermore, real-time integration of the Supervisory Control and Data Acquisition (SCADA) system is 

pivotal. Model-based controls encompass human-defined protocols for decision-making under specific operating 

parameters. The introduction of these elements heightens the importance of security measures. 'Smart monitoring' 

is imperative to mitigate security risks and the establishment of communication isolation, or air-gapping, provides an 

additional layer of robust cybersecurity. 
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Output for Milestone 4 

The culmination of Milestone 4 yields a product that aligns with the definition outlined in Section 2.2.3 of the 

Literature Review, thereby realizing a Control Twin. At this advanced level of Digital Twinning, the Control Twin is 

endowed with the capability to autonomously make decisions for optimizing the operating conditions of the 

treatment process. This entails real-time adjustments such as regulating chemical concentrations within the system, 

resulting in agile, data-driven control. 

Risks Associated with Milestone 4 

The risks associated with Milestone 4 consist of security concerns, data integrity and safeguard against breaches. 

Additionally, the establishment of communication isolation, or air-gapping, introduces a layer of cybersecurity. 

Mitigating these risks requires rigorous planning, vigilant monitoring and expert-level coordination to achieve a 

secure and successful milestone. 

There are high or extreme risks associated with this phase which will have already been addressed through the 

progress towards the first three milestones.  
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3.3.6 Organization 

In Table 5, definitions of the different steps in the Organization path of the Roadmap (Figure 9) are provided. 

 

Figure 9 Roadmap: Organization path 

Table 5 Organization path explanation 

Roadmap 

Step no. 

Roadmap  

Step name 
Definition 

Cross-

referencing 
Risk 

1 
Core  team 

selection 

The process of carefully choosing a dedicated team of 

experts and stakeholders within the organization 

responsible for leading and executing the Digital Twin 

development project. 

- - 

2 
Value 

Proposition 

Articulating the specific benefits, advantages and 

strategic value that the Digital Twin will provide to the 

organization, including its potential to address key 

challenges and deliver positive outcomes. 

Model 

Development 

1 

- 

3 
Problem 

definition 

Clearly defining the specific problem or challenge the 

Digital Twin is intended to address, ensuring 

alignment with organizational goals and objectives. 

Model 

Development 

1 

High 

Risk 

4 
Training and 

feedback 

Providing training and continuous feedback 

mechanisms to ensure that employees and 

stakeholders understand and can effectively utilize 

the Digital Twin technology. 

- - 

5 
Organizational 

value 

Assessing and articulating the potential value that the 

Digital Twin will bring to the organization, including 

improvements in efficiency, decision-making and cost 

savings. 

- - 

6 
Management 

buy-in 

Securing support and commitment from top 

management and decision-makers to allocate 

resources. 

- 
High 

Risk 

7 
Digital Twin 

usage policy 

Establishing clear guidelines and policies for the 

responsible and ethical use of Digital Twin, including 

data privacy, usage, retention and security 

considerations. 

- - 

8 
Ethical 

automation 

Ensuring that the automation and decision-making 

processes within the Digital Twin align with ethical 

principles and do not compromise fairness or 

transparency. 

- - 

9 
Management 

buy-in 

Securing support and commitment from top 

management and decision-makers to allocate 

resources. 

- - 
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3.3.7 Model Development 

In Table 6, definitions of the different steps in the Model Development path of the Roadmap (Figure 10) are 

provided. 

 

Figure 10 Roadmap: Model Development path 

 

Table 6 Model Deployment path explanation 

Roadmap 

Step no. 

Roadmap  

Step name 
Definition 

Cross-

referencing 
Risk 

1 
Treatment 

process selection 

The initial step in the roadmap involves choosing 

the specific treatment process that the Digital Twin 

will focus on, considering factors like relevance and 

impact. 

Organization  

2 & 3 
- 

2 Select application 

Identifying the practical applications and use cases 

where the Digital Twin will be applied within the 

chosen treatment process. 

- - 

3 Select type 

Determining the type of model Digital Twin (e.g., 

process-based, data-driven, hybrid)) that best suits 

the selected treatment process based on data 

availability, process complexity and computational 

costs. Further details can be found in Section 2.4.4. 

- - 

4 Development 

The phase where the actual Digital Twin model is 

built, involving creating the model, integrating data 

sources and developing the necessary algorithms 

and interfaces. 

Data 

management & 

Architecture 5 

High 

Risk 

5 Deployment 

Deploying the developed Digital Twin model into 

the operational environment, ensuring it can 

interact with the physical treatment process and 

collect real-time data. 

Data 

management & 

Architecture 5 

- 

6 Refinement 

Continuously improving and optimizing the Digital 

Twin's model performance based on real-world 

data and feedback, enhancing its accuracy and 

effectiveness. 

- - 

7 
Automated 

recalibration 

Implementing automated recalibration mechanisms 

to ensure that the Digital Twin model remains 

accurate and up-to-date with changes in the 

treatment process. 

- - 
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Roadmap 

Step no. 

Roadmap  

Step name 
Definition 

Cross-

referencing 
Risk 

8 
Model-based 

controls 

Integrating model-based controls to allow the 

Digital Twin to influence and optimize the 

treatment process through automated 

adjustments. 

- - 

9 SCADA integration 

Integrating the Digital Twin with Supervisory 

Control and Data Acquisition (SCADA) systems to 

enhance real-time monitoring, control and data 

exchange capabilities. 

- - 
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3.3.8 Data Management and Architecture 

In Table 7, definitions of the different steps in the Data Management and Architecture path of the Roadmap (Figure 

11) are provided. 

 
Figure 11 Roadmap: Data Management & Architecture path 

 

Table 7 Data Management & Architecture path explanation 

Roadmap 

Step no. 

Roadmap Step 

name 
Definition 

Cross-

referencing 
Risk 

1 
Strengthen ICT 

team 

The initial step involves reinforcing the ICT 

team’s skills, expertise and resources to 

effectively support the development and 

operation of Digital Twins 

- High Risk 

2 Stream sensor data 

Establishing efficient channels and protocols 

to collect and transmit sensor data from 

various sources to the Digital Twin in real-

time, ensuring data availability for analysis. 

- - 

3 Standardization 

Implementing standardized data formats, 

communication protocols and best practices 

to ensure interoperability and consistency 

across Digital Twin-related processes and 

systems. 

- - 

4 Central storage 

Setting up a centralized and secure data 

storage infrastructure to store and manage 

the vast amount of data generated and 

utilized by Digital Twins for easy access and 

analysis. 

- - 

5 
Real time 

integration 

Enabling real-time data integration and 

synchronization between the Digital Twins and 

other ICT systems to support timely decision-

making and responsiveness. 

Model 

Development 

4 &5 

- 

6 Model integration 

Integrating various Digital Twin models and 

simulations to create a holistic view of the 

organization’s assets and processes, 

enhancing the Digital Twin’s analytical 

capabilities. 

- - 

7 
Deploy missing 

sensors 

Identifying and deploying additional sensors or 

data sources to fill data gaps and enhance the 

Digital Twin’s ability to monitor and analyse 

the entire system effectively. 

- - 
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Roadmap 

Step no. 

Roadmap Step 

name 
Definition 

Cross-

referencing 
Risk 

8 
Automated 

validation 

Implementing automated validation processes 

to ensure the accuracy and reliability of data, 

models and predictions. 

- - 

9 
Corporate data 

warehouse 

Establishing a centralized corporate data 

warehouse to consolidate and manage data 

from multiple sources.. 

- - 
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3.3.9 Security 

In Table 8, definitions of the different steps in the Security path of the Roadmap (Figure 12) are provided. 

 

Figure 12 Roadmap: Security path 

 

Table 8 Security path explanation 

Roadmap 

Step no. 

Roadmap Step 

name 
Definition 

Cross-

referencing 
Risk 

1 Policy 

Establishing comprehensive cybersecurity 

policies that outline guidelines, rules and 

procedures for securing Digital Twins and 

associated data, ensuring compliance and 

protection. 

- High Risk 

2 Constraints 

Identifying and implementing constraints  and 

access controls to limit and regulate who can 

access and modify Digital Twins and their data 

and from what locations, minimizing security 

risks. 

- - 

3 Encryption 

Implementing robust encryption mechanisms 

to safeguard data both at rest and in transit 

within the Digital Twin ecosystem, protecting 

it from unauthorized access or interception. 

- - 

4 Transport 

Ensuring secure data transport and 

communication protocols to prevent data 

breaches, including secure connections 

between Digital Twins and external systems 

or networks. 

- - 

5 Smart monitoring 

Employing smart monitoring tools and 

techniques to continuously assess the 

cybersecurity posture of Digital Twins, 

detecting and responding to potential threats 

and suspected intrusions in real-time. 

- - 

6 
Communication 

isolation 

Implementing communication isolation 

measures to segment and protect different 

parts of the Digital Twin ecosystem, 

preventing lateral movement of cyber-threats 

within the network. 

- - 
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4 Functional Design 

4.1 Overview  

Based on a comprehensive literature review and interviews with leading organisations, a roadmap was developed for 

the creation and implementation of a Digital Twin for water treatment. As a subsequent phase, this roadmap was 

put into action and  tested in a real-world application. The practical testing took the form of a functional design, 

where a softening treatment process at De Watergroep’s (DWG) Bilzen water treatment facility served as the pilot 

case. In the sections below, a concise introduction to the softening process is provided, followed by a detailed 

overview of the methodology adopted for the functional design. Subsequently, the outcomes of the functional design 

are discussed, including a comprehensive set of requirements and services that should be integrated into a Digital 

Twin for this specific process. Finally, a series of actions and target recommendations are presented.  

4.2 Softening Treatment Process at WPC Bilzen 

The softening treatment process at the drinking water production facility in Bilzen is an integral component of a series 

of treatment processes dedicated to supplying drinking water to approximately 50,000 residents in the regions of 

Bilzen and Riemst, situated within the province of Limburg. A schematic process-flow diagram of WPC Bilzen can be 

found in Figure 13. In summary, raw groundwater is sourced from five wells, pumped to the water treatment works 

and subsequently distributed to three pellet-softening reactors. The number of pellet reactors in operation at any 

given time is determined by the volume of raw groundwater extracted from the wells. This, in turn, is regulated by 

the water level of the reservoir that stores the drinking water. As drinking water is distributed to customers, leading, 

to a decrease in the water level of the reservoir, the extraction flow-rate from the wells (and the number of wells in 

use) is increased. This adjustment controls the number of softening reactors online. The distribution of the total flow-

rate is a complex process due to variations in hydraulic resistance between the reactors. To address this complexity, 

a dedicated control-logic was designed and implemented within the Programmable Logic Controller (PLC). This 

ensures that the reactor with the highest hydraulic resistance has its inlet valve fully opened, while the inlet valves 

of the remaining reactors are adjusted to guarantee an equitable distribution of the flow between all of the available 

reactors. 

The softening reactors are filled with fine-grained sand. To raise the pH for the softening process, sodium hydroxide 

(NaOH) is proportionally dosed with respect to the feed water flow-rate and mixed intensively. The chemical increase 

in the pH due to the addition of NaOH leads to the precipitation of calcium carbonate and lime from the water, which 

then crystallises on the fine sand, forming pellets. The dosing of NaOH is primarily determined by the output hardness 

requirement of the reactor. Over time, the pellets grow, reducing the surface area available for new pellet formation. 

Used pellets are regularly removed and new fine-grained sand is introduced into the reactor. The effluent from the 

softening reactor undergoes pH adjustment through the addition of carbon dioxide (CO2). Within the softening 

reactor, online measurements are taken for the water level, pH, hardness and turbidity. The turbidity is used to 

control the suspension of particles and assess the cloudiness of the water. This data informs pellet-formation rate 

and guides the related operations for pellet removal and the addition of new sand. 



 

 

 

BTO 2023.080 | October 2023  A Roadmap to Creating Digital Twins for Drinking Water Treatment 49 

 

 

Figure 13 Schematic process flow diagram of WPC Bilzen. The Softening treatment process (onthardingsreactor) is fed with raw groundwater 
for hardness removal and then sent to the double filtration system. 

The selection of the Bilzen softening process for this functional design was determined by several factors. Firstly, it is 

one of the simpler softening processes within DWG, making it an accessible starting point for investigating the 

potential benefits of a Digital Twin. Secondly, a process engineer has developed an offline model using PhreeqC for 

simulating scenarios, such as assessing pH under different chemical-dosing rates and raw water compositions. 

Connecting this model with real-time data can offer valuable insights for operational and strategic decisions. Lastly, 

despite the well-known nature of the softening process, its dynamic operations from hydraulic and water quality 

perspectives provide opportunities for a Digital Twin. This includes advanced monitoring, data analysis, cost savings 

and sustainability improvements, especially in chemical dosing and energy consumption, while upholding stringent 

drinking water quality standards. 

4.3 Methodology & Functional Design Thinking 

The functional design process and design thinking adopted for this pilot case incorporated elements from an 

enterprise architecture methodology and framework which were tailored to align with DWG’s organisational 

structure and the stakeholders involved. Figure 11 illustrates the functional design framework, which integrates 

components from recognised open standards. Notably, it draws from The Open Group Architecture Framework 

(TOGAF) enterprise architecture (TOGAF 9.2, 2018), combined with the concepts elaborated in the Digital Twin 

roadmap. Specifically, the framework leverages terminology and concepts of motivational elements, as part of the 

TOGAF enterprise architecture design, such as identifying Drivers & Concerns, Requirements, Goals and Outcomes. 

Concurrently, it integrates elements such as core team selection, design and a value proposition, which are 

fundamental concepts of the Digital Twin roadmap. The core roadmap elements selected in this methodology 

represent the initial steps in the journey of creating and integrating a Digital Twin. These steps are essential 

precursors. As the project progresses, during which the identified requirements are detailed and the design of Digital 

Twin applications are considered, additional elements of the roadmap, such as model selection, model deployment, 

central storage for data and real-time integration, will come into focus. However, this level of detail is beyond the 

scope of this functional design exercise and should be considered as follow-up work to complement the current 

analysis. 
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Figure 14 Customised functional design methodology framework containing Digital Twin roadmap concepts, motivation elements and 
identification of Digital Twin application services. 

The flow of the framework and adopted methodology is as follows: 

• Initially, a core team is assembled, consisting of individuals with essential skills and expertise within the 

organization. This forms the initial and primary step in the Digital Twin roadmap. 

• Key stakeholders relevant to the softening process and its operations are identified based on their roles and 

responsibilities. 

• Interviews are conducted with these key stakeholders to gather essential information and data. 

• An analysis of the responses is performed to identify stakeholders' concerns regarding the softening process 

and the driving factors for implementing a Digital Twin. These drivers and concerns represent the 

motivations for stakeholders to implement changes in pursuit of specific goals. 

• The identified drivers and concerns are used to compose a list of requirements essential to designing a 

Digital Twin. In addition, they provide valuable insights for defining the primary Digital Twin goals, 

representing the intended end state expected by stakeholders and the organization. 

• The requirements defined serve as the basis for formulating the design principles, which offer governing 

guidelines and general attributes that any developed solution must adhere to. 

• Building upon the requirements and adhering to specific design principles, the design phase begins, allowing 

the development of tangible solutions in the form of functional Digital Twin application services. 

• During the design of the application services, it is important to make estimations and projections about the 

potential outcomes for the Digital Twin. These are then compared against the defined Digital Twin goals. 

This assessment of potential outcomes informs the core team about the Digital Twin’s potential value 

proposition, aiding in deciding its economic feasibility based on the expected impacts. Conversely, the 

outcomes, as agreed upon based on the requirements and ambitions of stakeholders, can also help inform 

and guide the designing of the application services. Additionally, actual use of the deployed Digital Twin 

applications will allow for a reassessment of the achieved outcomes, which can be used to validate the 

original, projected value proposition. 

As can be seen, the functional design methodology framework has been conceptualised to be both general and 

adaptable for implementation in various systems and processes within a water company. Certain components of the 
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functional design, especially those related to the motivational elements, can serve as recurring activities that can be 

performed at different stages in the lifecycle of developing the Digital Twin. Specifically, such a framework can be 

followed prior to attaining the specific milestones outlined in the roadmap. In the context of this design framework, 

applied to the softening process case, it is essential to clarify that the actual design and development of Digital Twin 

applications falls outside the scope of this project. However, potential applications have been identified based on the 

collected information. It is important to note that, as these applications have not been developed and deployed, 

assessing the Digital Twin outcomes is currently not feasible. Nevertheless, an example of potential outcomes is 

provided based on the specific Digital Twin goals identified. 

4.4 Functional Designing Digital Twin Creation for a Softening Treatment Process 

4.4.1 Core-team Selection and identified stakeholders 

The successful development and implementation of a Digital Twin for the softening treatment process at DWG  

requires the careful selection of a dedicated core team and identification of key stakeholders. This section provides 

insights into the critical aspects of this initial phase of the function design.  

Core-Team selection  

The core team is the backbone of the Digital Twin development project. It is vital to assemble a team of individuals 

with a diverse set of skills, expertise and experiences to ensure the success of the project. The core team for the 

project should include the following roles: 

1. Project manager: A skilled project manager who oversees the entire project ensuring it stays on schedule 

and within budget. This individual will be responsible for managing the resources, coordinating tasks and 

monitoring progress across all stakeholder groups. This is particularly important due to the diversity of the 

stakeholder groups and the demands of different departments responsible for data across the data 

domain owners.  

2. Domain Experts: Water treatment specialists with a deep understanding of the softening treatment 

process. These experts will provide valuable insights and guidance in modelling and simulating the 

softening process accurately.  

3. Data scientists, modellers and data domain owners: Experts in these topics are crucial for providing the 

data for the Digital Twin. Additionally, they are responsible for creating and refining the Digital Twin’s 

mathematical models, algorithms and predictive capabilities. Their expertise is vital to produce accurate 

and reliable results.  

4. ICT/OT specialists: Information and Communication Technology (ICT)/Operational Technology (OT) 

specialists will focus on the technical aspects of data integration, real-time monitoring and system 

integration. They will ensure the Digital Twin can seamlessly communicate with sensors and other data 

sources.  

5. Security Experts: Given the sensitivity of water treatment processes and the potential implications of a 

Digital Twin, experts in data privacy and cybersecurity should be included to guarantee security measures 

are integrated into the project from the outset.  

Identification of Stakeholders  

In addition to the core team, it is essential to identify and engage with relevant stakeholders. For the functional design 

a stakeholder analysis was conducted and the following stakeholders were identified: 

1. Softening treatment process plant operators:  These individuals play a critical role in the day-to-day 

operation of the softening process.  Involving them from the beginning will help ensure that the Digital 

Twin aligns with their operational capabilities, needs and goals.  
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2. Process engineer: Process engineers are essential for understanding the technical intricacies of the 

softening treatment process. They can contribute their knowledge to ensure the Digital Twin accurately 

models and optimizes the treatment process.  

3. Head of operational technology: This stakeholder is crucial for ensuring the integration of the Digital Twin 

with existing operational systems and technology. They can help align the project with current 

infrastructure and company goals.  

4. Head of Research and Development (R&D): The Head of R&D can provide strategic guidance and insights 

into cutting- edge technology, ensuring the Digital Twin remains relevant, innovative and impactful.  

5. Head of operations: The Head of operations oversees the entire operational process of the drinking water 

treatment overall. They can provide top-level support, ensuring the Digital Twin for softening aligns with 

the broader organisational goals.  

6. ICT Manager/Department: The ICT department is critical for technical support and cyber security 

considerations. They play a pivotal role in data integration and system security.  

7. Programmable Logic Controller (PLC) programmer: This stakeholder will ensure the integration of sensors, 

data transfer and automation of the process into the Digital Twin.   

8. Energy and Environmental coordinators: This stakeholder has a high interest in the accuracy of the Digital 

Twin. DWG has internal goals for sustainability, resource efficiency and emission reduction.  

9. Quality control manager: Quality control experts provide valuable input to maintain water quality and 

safety standards needed from the softening progress to program the Digital Twin project. The quality 

control department are one of the primary users of the data and predictive nature of the Digital Twin.  

10. Data Architect: The data architect is responsible for designing the framework for organizing and managing 

data, within the company, needed for the Digital Twin.  

11. Supervisory Control and Data Acquisition (SCADA) system manager: Stakeholder who will facilitate real-

time monitoring of control data which is utilized in the Digital Twin.  

12. Sensor company: Multiple companies which provide critical, high-quality sensors and data sources, 

ensuring that the Digital Twin receives accurate and reliable real-time data. A disruption within the supply 

chain of the sensors could lead to a critical failure of the Digital Twin.  

13. Scientific researchers (KWR): As a member of the BTO, DWG works closely with KWR on water research 

across many different topics. KWR researchers provide valuable insights into the latest advancements and 

research into water-data ecosystems. Researchers’ expertise can help ensure the Digital Twin incorporates 

state-of-the-art knowledge and techniques.  

From the stakeholder identification process eight groups of stakeholders were selected to be interviewed for the 

functional design. The selection was based on their roles and responsibilities, and level of influence and interest 

specific to the softening treatment process. These stakeholders were: the operators, process engineers, R&D 

Department, PLC programmers, energy and environmental coordinators, water quality control department, data 

architects and the ICT department.  

4.4.2 Value Proposition and Roadmap Endpoint Selection 

Developing and deploying a Digital Twin for any treatment process necessitates a significant capital investment, 

encompassing expenses from hiring personnel, deploying workforce for designing and deploying application services, 

investing in software and hardware and allocating organisational resources. However, particularly with digital 

technologies, the return on investment (ROI) is not always straightforward and clear. The uncertain nature of the 

benefits associated has posed a substantial obstacle to actively pursuing ventures in digital technology development, 

including Digital Twins. Therefore, it is very important to create a value proposition, as early as possible in the 
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development lifecycle, which involves demonstrating the potential benefits and advantages the Digital Twin can offer 

to stakeholders and the organisation. For the softening process, this can include showcasing how it can improve 

operational efficiency, reducing costs, enhancing decision-making, ensure water quality and support sustainability 

goals. The value proposition can include quantitative and qualitative elements.  

In this functional design process, the concept of defining Digital Twin Outcomes has been introduced to support the 

creation of the value proposition. It is recommended to define the outcomes during the design phase of the Digital 

Twin Application Services, which will be sufficiently informed, by the stakeholders needs and organisational 

ambitions, as discussed in the sections below. Identifying outcomes during the design phase offers insights that can 

inform the core team and management, providing valuable information before the complete design and 

development of the Digital Twin, which will require further investment and resource allocation. Although this 

functional design does not cover the detailed design and development of the application services, Section 4.4.8 

includes a brief discussion on Digital Twin Outcomes along with an example of how these outcomes can be quantified, 

using a specific use-case that the Digital Twin addresses. 

Another crucial element contributing to the streamlining of the entire Digital Twin design process is the selection of 

an endpoint in the Digital Twin Roadmap, akin to the concept of Backcasting. This endpoint serves as a clear and 

defined goal, providing direction for decision-making based on information gathered from the value proposition. 

Following discussions with stakeholders, particularly at the management level, a clear indication was given that DWG 

would like to consider the endpoint to be Milestone #3 – Decision Support Twin.  

4.4.3 Drivers and Concerns 

The questions posed to the stakeholders regarding drivers and concerns were based on their beliefs concerning their 

roles and responsibilities within the organization, with a particular focus on the softening treatment process. Drivers, 

whether originating internally or externally, serve as motivating factors for stakeholders to advocate and initiate 

necessary changes. Concerns can encompass various aspects of a system, including its functioning, operations, 

development, performance, reliability and evolution.  Table 9 below displays the identified Drivers & Concerns (D&C), 

which have been aggregated based on the insights gathered from the interviews and grouped according to their 

relevance to specific stakeholders. 

Table 9 Drivers & concerns aggregated from responses by stakeholders. 

S. No. Drivers & Concerns Description Relevant to Stakeholder 

D&C.1 Downtime of assets 

Reducing the duration of 

physical assets being non-

operational. 

PLC Programmer, 

Process Engineer 

D&C.2 Device health 

Monitoring of deviations in 

data from sensors due to 

calibration issues, fouling, 

etc. 

PLC Programmer, 

Process Engineer 

D&C.3 
Failover arrangements when 

Digital Twin fails 

Ensuring that in the event 

of non-availability of e.g. 

setpoints from the Digital 

Twin, a process is in place 

to fallback to sensible 

manual settings. 

PLC Programmer, 

Process Engineer 
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S. No. Drivers & Concerns Description Relevant to Stakeholder 

D&C.4 
Future operator knowledge and 

working efficiency 

Safeguarding and retaining 

the knowledge embodied in 

the operators and ensuring 

that working practices such 

as site visits are conducted 

efficiently. 

PLC Programmer, 

Process Engineer 

D&C.5 Help daily working 

Provide easily accessible 

and necessary data on 

quality parameters and 

physical assets, particularly 

when on-site.  

Water Quality Control, 

Operator 

D&C.6 Process optimisation 

Optimize distribution of 

water between reactors 

(hydraulic) and enhance 

process performance to 

maintain high water quality 

including controlling 

hardness, pH and turbidity 

along with the efficient 

utilisation of chemicals 

(NaOH and CO2 dosing). 

PLC Programmer, 

Process Engineer 

D&C.7 
Increased process 

understanding 

Enhance understanding of 

the softening process 

operations by having 

information on unmeasured 

parameters, performing 

what-if simulations and 

conducting scenario 

analysis. 

Process Engineer 

D&C.8 Intelligent chemical dosing 

Optimizing the use of 

chemical additives to the 

drinking water to minimize 

consumption and maximize 

efficacy. 

Process Engineer, Energy 

& Environmental 

Coordinator 

D&C.9 Unexpected events 

Unforeseen or unplanned 

events, such as water 

quality issues or asset 

problems, can lead to work-

related stress and potential 

disruptions in the 

continuous supply of 

drinking water. 

Process Engineer 
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S. No. Drivers & Concerns Description Relevant to Stakeholder 

D&C.10 Economics 

Overall economic impact in 

the form of reducing 

operation costs, minimising 

chemical dosing expenses 

and decreasing the lag time 

for data availability used in 

decision-making. 

Process Engineer, Energy 

& Environmental 

Coordinator, Director 

Innovations 

D&C.11 Good water quality 

Ensuring water output from 

the process meets the 

regulatory and business 

requirements in terms of 

quality  

Process Engineer, Water 

Quality Control, 

Operator, Director 

Innovations 

D&C.12 
Heterogenous internal data 

sources 

Minimizing the difficulties 

associated with integrating 

disparate data sources; 

ensuring that data is made 

available to all tiers of the 

business.  

Process Engineer, Water 

Quality Control, Energy 

& Environmental 

Coordinator, Operator, 

Data Architect 

D&C.13 Data quality 

The reliability of data 

measured by laboratories, 

online sensors and on-site 

measurements. This 

involves automated 

validation of data that 

reduces manual labour 

required to validate data 

enhancing data quality. 

Process Engineer, Water 

Quality Control, Data 

Architect 

D&C.14 Data unavailable 

Unavailability of crucial data 

due to limited, access, poor 

data management and lag 

time in receiving up-to-date 

data. 

Water Quality Control, 

Data Architect 

D&C.15 Data security 

Minimizing the risk of 

unauthorized access to data 

as well as ensuring 

confidence in the integrity 

of the data recorded and 

security of the 

communications between 

components of the Digital 

Twin. 

PLC Programmer, Data 

Architect 



 

 

 

BTO 2023.080 | October 2023  A Roadmap to Creating Digital Twins for Drinking Water Treatment 56 

 

S. No. Drivers & Concerns Description Relevant to Stakeholder 

D&C.16 
Environmental regulatory 

changes & climate change goals 

Challenges in achieving 

climate goals arise from 

increasingly strict 

regulations and current 

operations are expected to 

lead to higher chemical and 

energy consumption. 

Energy & Environmental 

Coordinator 

D&C.17 Unclear responsibilities 

Ambiguity in the allocation 

of responsibilities: a lack of 

accountability for processes 

across various departments 

and ineffective 

communication means that 

responsibilities maybe 

overlooked. 

Process Engineer, Water 

Quality Control 

D&C.18 Silos in organisation 

Inability or unwillingness to 

adequately share data and 

information across the 

organisation resulting in a 

lack of common 

understanding of business 

processes and interests. 

Process Engineer, 

Operators, Director 

Innovations, Energy & 

Environmental 

Coordinator, Water 

Quality Control 

4.4.4 Digital Twin Goals 

By consolidating the D&Cs expressed by key stakeholders, the next stage involves shaping the Digital Twin Goals 

(DTGs). These objectives encapsulate a distinct purpose and a specific desired end state that stakeholders aim to 

achieve through the Digital Twin. Consequently, the Digital Twin must be designed to achieve these overarching 

goals, ultimately addressing the primary D&Cs. In Table 10, the DTGs have been stated along with the D&Cs 

addressed. 

Table 10 Goals for the softening treatment process Digital Twin 

S.No. Goal D&C Addressed 

DTG.1 
Increase understanding and optimise softening process operations and 

associated assets 

D&C.3, D&C.4, D&C.5, 

D&C.6, D&C.7, D&C.8, 

D&C.11, D&C.17, 

D&C.18 

DTG.2 Assist in intelligent chemical dosing 

D&C.3, D&C.4, D&C.5, 

D&C.6, D&C.7, D&C.8, 

D&C.9, D&C.10, D&C.11 

DTG.3 Reduce softening process operational costs 

D&C.1, D&C.2, D&C.3, 

D&C.4, D&C.5, D&C.6, 

D&C.7, D&C.8, D&C.10 
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S.No. Goal D&C Addressed 

DTG.4 Provide centralised location for relevant heterogenous data 

D&C.12, D&C.13, 

D&C.14, D&C.15, 

D&C.17, D&C.18 

DTG.5 Assist in sustainability goals 
D&C.4, D&C.6, D&C.8, 

D&C.10, D&C.16,  

4.4.5 Requirements 

In addition to the formulated DTGs, the D&Cs serve as a robust foundation for identifying a set of requirements for 

the Digital Twin. When a specific goal is adequately decomposed, it yields a series of properties expected from the 

Digital Twin. These properties, when translated into actionable terms, become the requirements that essentially act 

as the ‘means’ to achieve the DTGs. Consequently, considering the D&Cs and the DTGs, a comprehensive list of 

requirements has been compiled, detailed in Table 11. It is important to note that multiple requirements may 

contribute to the realisation of a single DTG, even if they differ significantly and pertain to different elements or 

properties. Additionally, these requirements may involve the collaboration of various stakeholders who may not 

typically work together. 

Table 11 List of requirements that the softening treatment process Digital Twin must fulfil 

S.No. Requirements 

R.1 Data Availability 

R.2 Data Timeliness 

R.3 Data Accessibility 

R.4 Data Security 

R.5 Data Interpretability 

R.6 Data Reliability 

R.7 Optimise number of reactors online at a given time 

R.8 Optimise flow division for available reactor 

R.9 Optimise the softening treatment chemical process 

R.10 Enable more remote working – minimise on-site attendance 

R.11 Monitor sensor reliability 

R.12 Availability of unobserved parameters 

R.13 Monitoring the quality and quantity of chemicals used (based on process performance) 
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S.No. Requirements 

R.14 Monitoring the softening treatment operation costs 

R.15 Forecasting to inform operational decisions (of the order of days) 

R.16 Forecasting to inform tactical decisions (of the order of months) 

R.17 Being able to conduct what-if simulations/scenario analysis/decision support 

R.18 
Human-in-the-loop: flexibility in how monitoring/feedback systems behave such as user-defined 

alarms 

R.19 Dashboard that includes various data sources  

R.20 
Dashboard and advanced visualisation that contains advanced analytics, model predictions, 

sensor/device health and scenario analysis 

R.21 

Dashboard and advanced visualisation containing targeted data on KPIs related to the softening 

process such as water quality, economics, total quantities of chemical dosing, projections, energy 

consumption. 

R.22 Dashboard and visualisation to view operations and maintenance data. 

R.23 Reduce silos and communication (seeing the same data, common language - single source of truth). 

R.24 Responsibilities need to be clear. 

R.25 
Corporate commitment to maintaining and evolving the Digital Twin platform to take into account 

changes in best practice, changing data landscape etc. 

 

To depict the intricate relationships between the different entities encompassed within the functional requirements, 

a reference Digital Twin architecture has been designed, as illustrated in Figure 15. Particular attention was given to 

harmonizing this conceptualized architecture with the current implementation and future aspirations of DWG's data 

architectural landscape. In the physical entity layer, data sources, as identified by stakeholders, are clearly defined. 

The data collected from the treatment processes necessitates networked connections with the associated 

PLC/SCADA systems. Given the critical status of the  treatment installation infrastructure, accessing such data involves 

additional security measures, facilitated through a Demilitarized Zone (DMZ) positioned in the Communication layer. 

All acquired data finds its place within a Data Lake and Data Warehouses in the Informational layer. Here, the need 

for reliable and validated data is effectively addressed through automated validation and data reconciliation 

processes. Specific data is made available to the models deployed for the Digital Twin. Within the Application layer, 

this data, along with the models, is integrated into application services and the outcomes are relayed to specialized 

dashboards tailored to meet the unique needs of specific stakeholders. 
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Figure 15 Digital Twin reference architecture based on functional requirements 

4.4.6 Design Principles  

The design of the Digital Twin application services yields significant benefits when guided by designated design 

principles. These principles are strongly related to the DTGs and the listed requirements. By following the stipulated 

guidelines, the Digital Twin will maintain consistency and be easy to use, reducing communication barriers and 

ensuring a cohesive user experience. Furthermore, the Digital Twin will be easily scalable allowing for its evolution to 

include additional data, processes and functionalities. The Digital Twin can also be interoperable to integrate with 

other systems and finally, to be optimised for high performance. Based on the formulated DTGs and requirements, 

the following Design Principles (DP) have been defined for the softening treatment process Digital Twin: 

DP.1 FAIR, Secure, Efficient & Available Data 

Reinforce the ethical, responsible and efficient use of FAIR data (Findable, Accessible, Interoperable and Reusable). 

Assure that the data held by an organization is appropriately described by metadata ensuring its timely and accurate 

retrieval and encouraging its seamless reuse. Provide retrieval mechanisms are documented and publicly available.  

Ensure that data pertaining to individuals is handled responsibly and ethically by organizations and businesses.   

Eradicate data silos by presenting the data as a “single source of truth” for the whole of the organization. 

DP.2 Robust Process Monitoring, Optimisation, Forecasting & Understanding 

Emphasise the need for a reliable and real-time monitoring system to assess the performance and behaviour of the 

softening treatment process. Refining and optimising the process based on collected data, simulations and insights 

to enhance resource efficiency and water quality. Provide capabilities to anticipate future conditions and potential 

extreme events while increasing the in-depth understanding of the treatment process, enabling stakeholders to make 

informed decisions and to address operational and future challenges effectively. 

DP.3 Tailored and Interactive End-User Experience 

Provide tailored user interfaces, features and data displays that are customised based on the stakeholder group 

requirements. Include interactive elements and features such as real-time data visualisation and user-friendly 

dashboards. Ensuring stakeholders are presented with relevant, high-quality data aligning to their specific roles and 

requirements to eradicate communication silos, enable user-adoption and enhance decision-making. 

DP.4 Accountable, Purposeful and Promoting Organisation  

Prioritise the need for accountability and purpose-driven actions within the organisation’s Digital Twin 

implementation. Align the Digital Twin’s objectives to the strategic goals of the organisation which fosters purposeful 

development of the system contributing to improved decision-making, efficient operations and streamlined 
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processes. Promote the adoption and future adaptability of the Digital Twin by fostering a culture of constant 

evolution and embracing emerging technologies to ensure the system remains at the forefront of innovation. 

4.4.7 Digital Twin Application Services 

While considering the requirements, specific application services have been identified for inclusion in the design of 

the Digital Twin for the softening process. These applications aim to provide tangible solutions and services to key 

stakeholders, enhancing their efficiency, support informed decision-making at an operational, tactical and strategic 

level and contributing to organisation goals related to efficiency, cost optimisation and sustainability. It must be 

noted, that the identified services primarily reside in the Application and Presentational layers (southbound layers) 

of the architecture in Figure 15 – layers where maximum interaction with end-users occurs. However, successful 

deployment of the Digital Twin also depends on the integration and technology deployment within the Physical 

Entity, Communication and Informational layers. Based on discussions with relevant stakeholders, it is known that 

ongoing efforts including IT and OT convergence and data management and storage solutions address these needs, 

particularly regarding fulfilling specific requirements such as R.1-R.5, R.10 and R.23. 

Below, the identified Digital Twin Application Services (DT.AS) and the associated requirements that each fulfil are 

provided.  

DT.AS.1 Automated Real-time Data Validation & Reconciliation 

This service has been envisioned to be part of the Information layer and closely interacting with a Data Lake and Data 

Warehouse. Data quality compromises various factors, including sensor faults, calibration issues, fouling, connectivity 

problems between sensors, actuators and the data management system. Additionally, manual data curation and 

quality assurance is a prohibitively time-consuming and expensive task. Therefore, there is a need to conduct 

automated data quality control where data packed in batches or in real-time are screened for erroneous 

measurements. This can be achieved through statistical and rule-based anomaly detection methods to flag erroneous 

values. Decisions can then be made to reconcile the anomalies, either by replacing the value using interpolation, 

previous values or an alternative value through model predictions provided by other application services. This service 

fulfils the requirements R.6 and R.11. 

DT.AS.2 Advanced Statistical Analysis 

This service focusses on harnessing the available data to derive deeper insights, enabling informed decision-making 

and maximising the value of data resources by transforming data into actionable information, thus facilitating 

knowledge creation. This can include performing statistical summaries, KPI calculations and advanced statistical 

analysis such as Principal Component Analysis (PCA), Independent Component Analysis (ICA) and clustering 

techniques to increase understanding of the process. The deployment has been envisioned as a network of 

microservices that involves the breaking down of the different statistical computations and analyses into small, 

independent and reusable components that can be deployed, managed and scaled independently. This can be 

conducted using technologies such as Docker Containers, Kubernetes and Azure Container Instances. In production, 

the microservices take input data and perform the necessary analysis as defined by the user based on their 

requirements. This is then relayed to the other services within the Functional and Presentational Layers and can be 

considered to be part of the goal of returning better, more detailed information about the operation of the process 

to the operator and other stakeholders. This application service fulfils the requirements R.5, R.13, R.14 and R.18. 

DT.AS.3 Automated Reporting 

The automated reporting service leverages the single-source-of-truth concept to facilitate dissemination of the 

current system state along with related historical information.  The reporting can take the form of basic statistical 

summaries such as recording historical trends alongside current KPI values.  Reports can be automatically compiled 

into documents for wider dissemination within the organization and stored within a Document Management System 

or automatically distributed through subscription email or other corporate communication platforms. This service 
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complements the data available through the dashboarding facilities.  This application service fulfils the requirements 

R.1, R.3, R.5 and R.23. 

DT.AS.4 Process Model to Perform What-if? Scenarios 

This application service functions as a computational tool that facilitates the simulation of hypothetical scenarios and 

evaluates their potential impact on the virtual softening treatment process. Its functionalities can include process 

optimisation, assessment of chemical dosing strategies and scenarios and validates measured parameters, such as 

pH, with the model predictions, to assess the health and reliability of sensor devices. Additionally, data and 

information on unobserved and unmeasured parameters can also be accessed that increases process understanding. 

By conducting what-if simulations, stakeholders can gain valuable insights into how process changes may affect 

operational efficiency and water quality, ultimately enabling more informed decision-making and strategy 

development. This application service can potentially be realised by operationalising the existing offline PhreeqC 

model, initially as set up by the process engineering department for the softening process. By connecting it with real-

time data, it offers a quick-win solution for evaluating its potential in achieving the DTGs. However, it's essential to 

thoroughly evaluate the model and its deployment requirements, comparing them with alternative modelling options 

to ensure the most suitable solution. This application service fulfils the requirements R.7-R.9, R.11-R.13, R.17 and 

R.18. 

DT.AS.5 Forecasting 

A forecasting service for the softening treatment process entails the development of predictive models. Such models 

can benefit from the use of data-driven technologies using historical data for the training of the models and when 

deployed, connected with real-time data during production. This service can be used to anticipate and predict 

variations in the quality of incoming raw water quality, process parameters, water quality attributes in the reactor, 

operational conditions and cost and economic predictions. Moreover, predictive  and proactive maintenance of key 

physical assets such as sensor devices can be conducted where early detection of anomalies and deviations promote 

efficient operations. Such a capability can complement and enhance existing maintenance programs. The forecasting 

service can be considered to offer forecasts across various time horizons, addressing both operational and tactical 

needs. For operational decisions, insights provided in the order of days, allows for adjustments during operations and 

maintenance. On a tactical level, forecasts made in the order of months, facilitates long-term planning and resource 

allocation such as economic decisions and chemical stockpiling. The forecasting service can become critical to address 

current challenges related to water availability, particularly as water sources may transition from groundwater to 

alternative sources such as surface water, where quality is more variable and seasonal. The application service fulfils 

the requirement R.7-R.9, R.11 and R.14-R.16. 

DT.AS.6 Dashboarding and Advanced Visualisation 

This service serves as the principal interface between the Digital Twin and a multitude of stakeholders. Furthermore, 

a primary requirement stated by stakeholders, it offers the possibility of having access to relevant data in an 

understandable format, that supports data-driven decisions-making and visualisation. The provision of standardised 

access to the data and information through this application service plays a crucial role in eradicating communication 

and organisation silos, to ensure better collaboration among entities within the organisation. Notably, the Digital 

Twin Roadmap considers dashboards (Simple Dashboard and Multi-source Dashboard with Advanced Analytics) as 

pivotal milestones for an organisation throughout the Digital Twin’s development and deployment. The following 

dashboards have been identified as integral part of this visualisation application service: 

• DT.AS.6.1 Dashboard #1 – Multi-location & multi-data source water quality monitoring: Visualising water 

quality data related to the groundwater and the influent and effluent of the softening treatment process for 

the purpose of monitoring and reporting. This dashboard is most relevant for the stakeholder – water quality 

control 
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• DT.AS.6.2 Dashboard #2 – Operator Insights: Visualisation of key operations and maintenance data such as 

historical and scheduled maintenance records, chemical stockpiling, alarms, spare-parts inventory and 

more. This dashboard is most relevant for the stakeholder – operators.  

• DT.AS.6.3 Dashboard #3 – Operational & Process Optimisation: Visualisation and interactive dashboard 

containing monitoring data, advanced analytics, model predictions, operational forecasts, what-if scenarios, 

sensor/device health, KPIs on economics and water quality. This dashboard is most relevant for the 

stakeholder – process engineer. 

• DT.AS.6.4 Dashboard #4 – Strategic: Containing visualisation of measured and calculated data specifically 

curated in order to provide strategic information on the KPIs related to the softening process such as water 

quality, economics, total amount of chemical dosing, projections and energy consumption. This dashboard 

is most relevant for the stakeholders – energy and environmental coordinator, direction of innovations. 

4.4.8 Digital Twin Outcomes and Motivation Stack Example  

The Digital Twin Outcomes (DTO), as discussed in Section 4.4.2, play a pivotal role in determining the value 

proposition of the Digital Twin, both in its design phase and when it is actively used by stakeholders. These outcomes 

represent the tangible results and benefits that the Digital Twin delivers. They can provide both qualitative and 

quantitative indicators, which, when consolidated, creates a value proposition that guides subsequent decision-

making by the core team. 

During the design phase, the DTOs can be defined from two sides. The DTOs can be envisioned or projected based 

on the intended DTGs and requirements. These DTOs can guide the development of the application services to 

achieve the specific goals. In contrast, the design and choice of technology used for the application services, can be 

assessed to what DTOs they provide. These acquired DTOs can then be cross-examined with the defined DTGs to 

assess whether this iteration and choices for the design meets the ambitions and needs of the stakeholders. A 

combination of these DTOs will aid in the value proposition creation. Once the Digital Twin is deployed and utilised 

by stakeholders, real-world outcomes emerge as a result of its functionality. These outcomes are the actual benefits 

experienced by users and the organization. They might include improved process performance, cost savings, 

enhanced water quality, or other operational advantages. The assessment of these outcomes is essential for verifying 

the value proposition of the Digital Twin and evaluating whether it aligns with the initial projections made in the 

design phase. 

In Figure 16 below, an example illustrates the evaluation process during the design of the Digital Twin. This process 

combines the various motivation elements discussed in the previous sub-sections, DTOs and value propositions for a 

specific use case focused on optimizing the chemical dosage in the softening treatment process. This illustration is 

referred to as the Motivation Stack. It demonstrates the bidirectional information flow from both a top-down and 

bottom-up perspective. At the top of the Motivation Stack, relevant stakeholders for optimizing chemical dosage are 

defined. Based on their Drivers & Concerns, specific Digital Twin Goals have been established. Additionally, the 

Drivers & Concerns inform the Requirements for the Digital Twin. Application Services are identified to meet these 

requirements while adhering to the Design Principles. Based on the anticipated performance of the services during 

the design phase, the application services yield certain Digital Twin Outcomes, which in turn, contribute to the 

formulation of the value proposition. This value proposition directly informs the Programme Manager of Innovation, 

who is a core-team member. For illustration purposes, sample outcomes are provided. Anticipated outcomes include 

a reduction in chemical dosing demand due to process optimisation. However, an increase in operational costs due 

to chemical dosing is projected due to the adoption of higher-quality chemicals. This, in turn, indirectly results in a 

lower carbon footprint, as a lower chemical volume is required. These interventions aim to maintain the hardness 

level in the produced water within a certain range of French degrees. 
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Figure 16 Motivation Stack example illustrating the evaluation process for optimising chemical dosing in the softening treatment process 
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4.4.9 Assessment of Roadmap Placement for Digital Twin 

Finally, to strategically plan the development and deployment of the Digital Twin, it is essential to determine its 

position in the Roadmap (Figure 8). The analysis of the stakeholders’ responses revealed that DWG is currently within 

the region of Step 1 – Core team selection and Milestone #1 – Simple Dashboard. In this functional design, various 

elements of the roadmap have been detailed for the softening treatment case study and identified concrete 

application services based on key stakeholder requirements and organisational objectives. These outcomes serve as 

a strong foundation for progressing through the roadmap to reach the agreed-upon endpoint, which, in the case of 

the Digital Twin for the softening treatment process, is Milestone #3 – Decision Support Twin. Table 12 provides a 

plan for the development and deployment of the application services aligned with the Roadmap Milestones. 

Table 12 Development and deployment planning of Digital Twin Application Services (DT.AS) aligned with Digital Twin Roadmap milestones 

Roadmap Milestone Digital Twin Application Services (DT.AS) Maturity Level 

Milestone #1:  

Simple Dashboard 

DT.AS.2 – Proof-of-Concept 

Statistical analysis to be conducted has been defined. Initial development and 

offline tests conducted. 

DT.AS.3 – Proof-of-Concept 

Reporting formats defined and tests conducted in a testing environment. 

User-feedback received in an acceptance environment. 

DT.AS.6 – Proof-of-Concept  

Mock-up layouts for dashboards defined, relevant data sources identified and 

deployment of a simple release of the dashboards with connection to 1 data 

source. Collection of user-feedback to inform improvements. 

Milestone #2:  

Multi-Source Dashboard with 

Advanced Analytics 

DT.AS.1 – Proof-Concept 

Methods in data validation and reconciliation tested and validated. Service 

deployed in a testing environment. 

DT.AS.2 – Production ready 

Deployed as a network of microservices. Container instances’ API endpoints 

defined and exposed to receive input. Connections with DT.AS.6 service to 

provide output to end-users. 

DT.AS.3 – Production ready 

Service deployed and connected with Informational layer, DT.AS.2 and 

DT.AS.6. 

DT.AS.4 – Proof-of-concept 

Model concept/type finalised for process model. Training or calibration 

finalised and testing/validation conducted with historical data. Initial release 

of best performing model in acceptance environment and integration with 

real-time data to assess model performance with new data and scenarios. 

Connections with DT.AS.6 to access and visualise predictions. 

DT.AS.5 – Proof-of-concept 

Data or target variables prioritised to be considered for forecasting. Input 

variables or features identified through feature engineering and feature 

importance. Training of data-driven models to test forecasting capabilities. 

Deployment of an instance of the model and integration with real-time data. 

Connections with DT.AS.6 to access and visualise forecasts. 
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Roadmap Milestone Digital Twin Application Services (DT.AS) Maturity Level 

DT.AS.6 – Production ready 

All dashboards deployed and  fully operational, with seamless integration of 

data from multiple sources and the outputs of advanced statistical analysis 

microservices. Relevant stakeholders have access to the dashboards, which 

are actively utilised in their day-to-day tasks and operations. 

Milestone #3:  

Decision Support Twin 

DT.AS.1 – Production ready 

Data validation and reconciliation service integrated with Data Lake and Data 

Warehouse and performing automated and real-time data quality control. 

DT.AS.4 – Production ready 

Process model refinement based on performance data. Protocols for 

recalibration established. Service enabled to perform scenario analysis. 

Model fully integrated within Digital Twin, providing crucial information on 

softening treatment processes to inform operational and long-term strategic 

decision-making. 

DT.AS.5 – Production ready 

Forecasting model re-training and refinement based on performance data. 

Serverless functions deployed to ensure constant updating of model with 

new training data. Models fully integrated within Digital Twin, providing 

crucial information on softening treatment processes to inform operational 

and long-term strategic decision-making. 

Milestone #4:  

Control Twin 

Not pursued in the implementation of the Digital Twin for DWG’s softening 

treatment process. 

 

4.5 Targeted Actions and Recommendation 

The functional design has provided a comprehensive framework and analytical methodology to understand 

stakeholder motivations, identify Digital Twin Goals, formulate requirements and method to understand the value 

proposition for the development and deployment of a Digital Twin and its application services for the softening 

treatment processes. Provided below are targeted actions and recommendations that can be considered to further 

expand this analysis and considerations for the Digital Twin design: 

• The development of use cases and user stories can be a suitable way to further expand the relations 

between the Digital Twin Goals, identified requirements and the defined application services. This can also 

be a meaningful method to communicate back to the stakeholders on how such solutions can help fulfil 

their requirements.  

• It is recommended that Motivation Stacks are defined for all defined use cases, as shown in the example 

provided in Figure 16, to support this process. 

• If necessary, certain requirements can be decomposed to more detailed requirements. For example, a 

requirement stated as  Optimise the softening treatment chemical process can be further broken to optimise 

chemical dosing, optimise removal of pellets, and more. It is recommended that based on the assessment 

of each requirement, a brainstorming or working session is organised with key stakeholders/experts (in the 

provided example, that would be the PLC programmer and process technologists) that can detail 
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requirements which directly inform the Digital Twin Application Services. Furthermore, it is recommended 

to ensure accountability of each requirement to ensure that the developed applications cover all identified 

requirements assigned to it. 

• It is recommended that workshops, in the form of multi-stakeholder forums, are conducted to discuss which 

data and specific parameters are of importance for the various application services. This will ensure further 

the fulfilment of certain requirements related to data availability, data interpretability and human-in-the-

loop. 

• An addition to the current functional design method is the consideration of constraints, with respect to the 

current system as well as from a technological perspective. Information on the constraints can be an 

important factor during the design of the Digital Twin application services.  

• It is recommended that at every Milestone of the roadmap (or during the management buy-in step), a review 

of the Digital Twin Goals and Design Principles are conducted to ensure they remain up-to-date. These 

elements can be updated or upgraded based on what the current state of the system and what was achieved 

in the previous development cycle.  

• Stakeholder feedback highlighted a lack of alignment on the definition of a Digital Twin and the digitalisation 

strategy. It is recommended that such concepts are clarified and regularly communicated to the 

stakeholders. This can also be a topic for discussion in a multi-stakeholder forum. 

• A potential follow-up activity is to identify implemented digital twins for the softening treatment process by 

other water companies or utilities and conduct a comparative study to assess the requirements, outcomes 

and value propositions of this study in relation to their approaches and implementations.  
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5 Conclusions and Recommendations 

5.1 Conclusions 

This report outlines a systematic roadmap for implementing Digital Twin technology in drinking water treatment 

processes, enabling real-time water quality monitoring. Digital Twins, representing virtual models of real systems, 

mimic physical processes using actual data inputs, offering insights into water quality parameters and enhancing 

operational efficiency. Furthermore, it addresses the need for data-driven decision-making in water companies while 

retaining operator knowledge. Digital Twins serve as virtual representations, facilitating this transition. The roadmap 

not only focuses on technical integration but also emphasizes organizational aspects, including data governance, skill 

development and structural changes. 

The study results in a comprehensive literature review, shared understanding of Digital Twin concepts and a detailed 

roadmap specific to water treatment processes. It covers defining the purpose, technical integration, organizational 

recommendations and guidelines for adopting standards and platforms. These outputs empower stakeholders with 

knowledge essential for successful Digital Twin implementation. 

Stakeholders, including process technologists, ICT professionals, data engineers and management professionals are 

demonstrated to play vital roles in the inception, implementation and adoption of a Digital Twin as well as collectively 

benefiting from the results. Process technologists gain from real-time insights, while data engineers can simplify 

analyses using Digital Twins. Collaboration among domain experts is seen to be crucial highlighting the 

interdisciplinary nature of Digital Twin projects. 

The project involved gathering scientific knowledge, exploring existing implementations, identifying relevant KPIs, 

assessing data infrastructure and developing a detailed roadmap. Stakeholder engagement informed the roadmap 

development, leading to the creation of a functional design for a case study on water softening. The design includes 

selecting a core team, identifying a value proposition and clarifying design principles and requirements, illustrating 

practical application steps. 

Overall, the project's outcomes provide a holistic approach to Digital Twin implementation in water treatment 

processes, bridging the gap between technical integration and organizational readiness. Moreover, it was observed 

that a roadmap, offering strategic direction and vision, can be effectively applied and operationalized using the 

developed methodology within the functional design. This activity served to confirm that the concepts outlined in 

the roadmap are indeed, valid and essential in the pursuit of creating and integrating Digital Twins.  

5.2 Recommendations 

The following recommendations and potential follow-up activities have been envisioned: 

• Validation of the roadmap by key operational and management level stakeholders from the water 

companies 

• Advancing the results of the current functional design for De Watergroep’s softening process to pursue the 

design and implementation of a Digital Twin, striving to reach Milestone 1 of the roadmap. 

• Testing the roadmap further by conducting a more detailed functional design of Digital Twin requirements 

for other drinking water treatment processes. 
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Appendix I. Interview Questions for the Leading 

Water Companies 

Interviews – Leading (Water) Companies in the Development and Deployment of Digital Twins 

Within the BTO Digital Twin Zuivering project, interviews are needed to be conducted with leading (water) 

companies to gather information on how such a company have envisioned, developed and potentially deployed 

digital twins within their technical processes or organisation in general. The purpose is to learn from their 

experience, what was needed during such a transition, what all tools are currently being used and more 

importantly, what were the major limitations or barriers that affected their execution of such a strategy. Such 

learnings can then be consolidated by the project team and used in the development of the roadmap along with 

reporting the results to the broader drinking water sector.  

The following document should be considered as a guide that can be utilised during the interviews. Questions have 

been listed in order that can be followed while conducting the interview and space has been provided to record the 

answers. The questions have been also been grouped within overarching topics. 

Interviewers: 

Interviewee(s) Details: 

Name: 

Position: 

Organisation/Company:  

Contact Details: 

Date: 

Location: 

1,2,6,7,8 

Pilot 

I. What is a Digital Twin? 
 

1. What is your or your organisation’s definition of a Digital Twin?  

2. What functions should the Digital Twin be capable of conducting?  

 

Organisational/Strategic Level 



 

 

3. What are the main drivers currently for your (water) company to perform a digital transition and 

for the adoption of Digital Twins? Are there organisational challenges, technological challenges, 

environmental challenges or customer-related challenges that has driven your company to look 

into Digital Twins? 

Examples to stimulate a discussion/response: 

Organisational Challenges: Digitising decades of knowledge that are currently in possession within an ageing 

workforce, increasing efficiency withing organisation, standardising data and information to promote easier 

sharing among departments. 

Customer-Related Challenges: Streamlining and automating handling of customer complaints, (near) real-

time sharing of data/information relevant to customer consumption 

Technological Challenges: Better monitoring of process performance, converting water treatment systems 

that are data-rich to information-rich, optimisation of system to better meet targets, plant-wide control 

Environmental Challenges: Tackling climate change related challenges, climate resilience of water treatment 

assets, future-proofing of water treatment assets. 

4. Does your (water) company have a digital strategy to support the digital transition and promote 

the use of Digital Twins? If yes, could an explanation be provided considering – how many years 

does the current digital strategy run for; which part of the business is the digital strategy 

developed for; who is responsible for the implementation of the digital strategy; which product 

owners have been designated for the implementation? 

5. Were there specific milestones defined within the existing digital strategy, or in general, in the 

development and deployment of the Digital Twins? If so, what were they? Which have been 

achieved and how long did it take? How many are remaining to be achieved? 

Examples of Milestones that could be mentioned to stimulate discussion/response: 

Milestone 0 – There have been internal conversations on the subject, for the past 1 (or more) year 

Milestone 1 – Proposals and strategic documents have been provided to the management requesting for 

budget allocation. 

Milestone 2 – Increased deployment of sensors and instrumentation to further increase data availability. 

Milestone 3 – Research projects on developing proof-of-concept data analytics tools, Digital Twins (AI or 

process models) for given use cases within the drinking water treatment assets. 

Milestone 4 – Further training, evaluation and finalisation of Digital Twin solutions. 

Milestone 5 – Retrofitting or upgrading of IT infrastructure to support the deployment of Digital Twins. 

Milestone 6 – Deployment of Digital Twins into legacy system providing (near) real-time output 

6. Which Key Performance Indicators (KPIs) were considered important when developing the Digital 

Twin? 

7. What is the (if any) main obstacle(s) that hamper the deployment of and transformation to a 

digital twin? 

Depending on the answer please proceed to the correct section (for example): 



 

 

Challenges with environment, sensors, data management, IT support- Go to section II, III and IV 

Challenges with modelling- Go to section III, IV 

Challenges with data visualisation, access to data and control of data- Go to section V 

Challenges with organizational acceptance, trust of DT and legal regulations- Go to section VI and VIII. 

II. IT Infrastructure/Architecture Related 
 

8. Have the Digital Twins been deployed within the legacy system of the company? Or are they 

currently running in other servers (Virtual Machines for example)? 

9. Could a short walkthrough/explanation be provided on how the data pipeline and communication 

between the various components within the IT infrastructure has been currently setup? From raw 

data being collected by sensors, to making predictions using the Digital Twin and relaying the 

outputs into visualisation tools. 

10. Was there a need to upgrade or retrofit the current IT infrastructure to support the deployment 

of Digital Twins? If so, was it conducted internally or sub-contracted to a company? 

11. Has the Digital Twin been deployed within a paid cloud computing service, such as Azure? Or are 

open-source platforms being used and if so, why (or why not)? 

12. Are models and other pertinent steps (such as data validation, pre-processing of inputs and 

outputs, etc.) being containerised (such as the use of Dockers) for the deployment? 

13. How is data security being handled with respect to the interaction between the data storage, 

Digital Twin and end-users within your company? Was the legacy system sufficiently equipped to 

deal with data security related issues or were there need for upgrades? If upgrades were made, 

what were the main points of limitation that were prevalent? 

 
III. Data Collection and Sensor Deployment (15 minutes) 

 

14. Which process-based, asset-based and maintenance-based parameters are measured using online 

sensors? (To be answered as a general overview, not looking to get a list of all parameters).  

15. Are there key or ‘nice-to-measure’ parameters still needed to be measured online? Are there plans 

to further expand the deployment of sensor and increase the volume of data?  

16. From a financial perspective, what is the typical investment needed to be able to deploy new 

sensors to measure all relevant and key process parameters within a treatment plant? (If a non-

water company, question should be tailored to their process/what the digital twin is for) 

17. What is the typical time period needed to be receiving reliable data from the sensors? Consider 

the following activities as an example - acquisition of the new sensors, deployment, testing, 

calibration, making IoT connections to the legacy systems, storage in the data warehouse.  

 

IV. Models Trained/Calibrated with the Digital Twin 
 

18. What type of process(es) within the treatment or other system is (are) being modelled as part of 

the Digital Twin? And why these processes? 



 

 

19. Are first principle models/mechanistic/phenomenological models being calibrated and used? If so, 

why? And if not, why have they not been considered? What limitations or challenges led you to 

decide to not use them? 

20. Are Artificial Intelligence (AI) models being trained and used? If so, what type of AI models- ML 

models, neural networks, deep learning based, etc.? Why and what benefits of AI models led you 

to use such tools? If not used, why not and what challenges within the process or organisation led 

you to not consider AI models?  

21. Have hybrid models been considered (or used) as a Digital Twin? Hybrid models can be loosely 

defined as models that can combine process-based and data-driven models in a manner that 

allows for more accurate predictions of given processes by adequately benefiting from the 

advantages existing within the two schools of modelling. 

22. How often are the models being used re-calibrated or updated? Is this being done live or ‘on the 

fly’? If not, is it feasible for live updating? What would be the current barriers or limitations of the 

models deployed that prevents live updating? 

23. Are modelling software being used for the digital twin? Are they paid or open-source? If no 

software is used, is Python or (another programming language) the main foundation for the 

development and deployment of the models? 

 
V. Dashboarding and Advanced Visualisation 

 

24. How are the outputs/results from the Digital Twin visualised currently? Have they been included 

into the legacy system based dashboards? If so, what are the software tools used in the legacy – 

PowerBi, Tableau, etc.?  

25. If no for legacy dashboards in Q21, can the new dashboards developed be described? Are open-

source based solutions (such as Grafana) being considered? Are these containerised for the 

deployment? 

26. How is access to the dashboards managed? Are all employees able to see the Digital Twin outputs 

or only a handful? What type of employees (process operators, process technologists, 

management, etc.) have been given access? 

27. Can control-based updates (such as setpoints of specific assets with the treatment process) be 

made from the dashboard, based on the outputs of the Digital Twin? As a result, is a form of 

predictive control being utilised of considered?  

28. How important is the dashboard to reach the goal of the Digital Twin? 

 

VI. Perception of the Digital Twin within the Organisation 

29. How do process operators value the Digital Twin? Do operators value their work the same, more 

or less due to the Digital Twin? Is their experience still valued? 

30. Were specific interactions (such as workshops) and events organised to provide transparent 

information to process operators, thereby potentially promoting them embracing (the use of) 

Digital Twins? How was this handled or was there even a need for it? 

31. Were the operators incorporated and made involved in the initial planning for the development 

of the Digital Twins? 

32. Do the colleagues, especially operators, trust the Digital Twin and the outputs it provides? How is 

it managed? 

33. Was any training provided to the operators for the implementation and use of the Digital Twin? 



 

 

34. How important is the commitment of management to ensure the smooth execution and use of 

the Digital Twin? And why? How do you foresee their commitment to be in the coming future?  

 

VII. Legality and Regulations 

35. Is the Digital Twin used for gathering data or modelling of specific processes for the purpose of 

reporting and ensuring government compliance?  

36. Are (or were) there any legal barriers/issues that impacted the development and deployment of 

the Digital Twin? 

 

VIII. Digital Twin perception 

In the last 10 minutes of the interview discuss the following: 

37. Does your digital twin live up to the expectations of your organisation? 
38. What are the benefits of the digital twin? How do you qualify these benefits? 
39. Is there anything that you would have done differently in your implementation plan for 

the digital twin? 
 

Relevant Points Made During Discussion:  

 

 

  



 

 

Appendix II. Roadmap Risk Assessments 

Table 13 Risk Assessment for Organization path 

Step of Roadmap ID 
Risk  

Description 

Resources 

Impacted 

Probabili

ty Level 
Impact Level 

Risk 

Value 

Overall Risk 

Assessment 

Select 

multidisciplinary 

coordination 

Team 

38 Lack of resources ALL 
4  

Likely 
4  

Major 
16 

Extreme  
(15-25) 

39 Lack of knowlege ALL 
2  

Unlikely 
2  

Minor 
4 

Moderate  
(4-6) 

Select users with 

digital mindset 
40 Lack of knowledge ALL 

3  
Possible 

4  
Major 

12 
High  

(8-12) 

Define what 

problem 

DT/Dashboard 

will solve 

41 Lack of knowledge ALL 
4  

Possible 
5  

Major 
13 

High  
(8-12) 

User Feedback/ 

training 
42 

Outdated operational 
procedures 

Operators, 
supervisors 

3  
Possible 

2 
Minor 

6 
Moderate  

(4-6) 

Show value to 

organization 
43 

Lack of stakeholder 
engagement 

All 
3  

Possible 
1  

Negligible 
3 

Low  
(1-3) 

Policy Change/ 

Role of DT in 

organization in 

decision making 

44 
Lack of operator  
buy-in 

ALL 
3  

Possible 
2 

 Minor 
6 

Moderate  
(4-6) 

45 

Lack of acceptance 
and incapability to 
switch to a new way 
of working 

Operators, 
supervisors 

3  
Possible 

3  
Moderate 

9 
High  

(8-12) 

Evaluate legal 

ramifications of 

decision making 

46 
Ethics of digital twin 
making decisions. 
Liability  

ALL 
4  

Likely 
4  

Major 
12 

High  
(8-12) 

Convince 

management 
47 

Results do not prove 
necessity of 
management 

All 
3  

Possible 
5 

Catastrophic 
15 

Extreme  
(15-25) 

  



 

 

Table 14 Risk Assessment for Model Development path 

Step of Roadmap ID 
Risk  

Description 

Resources 

Impacted 

Probability 

Level 

Impact 

Level 

Risk 

Value 

Overall Risk 

Assessment 

Selection Process 

1 
Lack of problem 
definition 

ALL 
3  

Possible 
4  

Major 
12 

High  
(8-12) 

2 
Selection of 
inappropriate task 

ALL 
3  

Possible 
2  

Minor 
6 

Moderate  
(4-6) 

Select DT Goal 3 
Unclear 
understanding of DT 
levels 

Developers, 
Modellers, 
Managers 

2  
Unlikely 

2  
Minor 

4 
Moderate  

(4-6) 

Choose model 

type (AI, hybrid, 

mechanistic) 

4 
Unclear 
understanding of 
necessary models 

Developers, 
Modellers 

4  
Likely 

4  
Major 

16 
Extreme  
(15-25) 

Offline model 

development 

5 
Incorrect/insufficient 
data 

Developers, 
Modellers 

5  
Almost 
Certain 

4  
Major 

20 
Extreme  
(15-25) 

6 Lack of modellers 
Developers, 
Modellers 

3  
Possible 

2  
Minor 

6 
Moderate  

(4-6) 

7 Cost of modelling 
Developers, 
Modellers, 
Management 

3  
Possible 

2  
Minor 

6 
Moderate  

(4-6) 

8 Lack of sensors 
Developers, 
Modellers, 
Operators 

4  
Likely 

3 
Moderate 

12 
High  

(8-12) 

9 run time is too long  
Developers, 
Modellers, IT 

3  
Possible 

3 
Moderate 

9 
High  

(8-12) 

Live model 

sensor fusion 

10 
Setting up required 
infrastructure is 
deemed too costly 

IT, 
management 

2  
Unlikely 

3 
Moderate 

6 
Moderate  

(4-6) 

11 
Update interval 
sensor is too low 

developers, 
modellers 
data expert 

2  
Unlikely 

3 
Moderate 

6 
Moderate  

(4-6) 

Improve model 12 

There has been no 
proper development 
pipeline 
implemented which 
makes deploying of 
new versions hard 

developers, 
modellers 
data expert IT 

3  
Possible 

3  
Moderate 

9 
High  

(8-12) 

Automatic 

retrain/recalibrat

e model 

13 

data validation is not 
done properly (yet) 
before stored in the 
data warehouse 

  
3  

Possible 
2  

Minor 
6 

Moderate  
(4-6) 

Develop model 

based control 

14 Management buy-in ALL 
2  

Unlikely 
3 

Moderate 
6 

Moderate  
(4-6) 

15 
insufficient model 
speed 

developer, 
modellers, IT, 
process 
technologist 

3  
Possible 

2 
Minor 

6 
Moderate (4-

6) 



 

 

Step of Roadmap ID 
Risk  

Description 

Resources 

Impacted 

Probability 

Level 

Impact 

Level 

Risk 

Value 

Overall Risk 

Assessment 

16 
insufficient model 
accuracy 

developer, 
modellers, IT, 
process 
technologist 

3  
Possible 

4  
Major 

12 High (8-12) 

17 

lack of knowledge 
(modellers are not 
process control 
experts) 

  
3  

Possible 
3 

Moderate 
9 High (8-12) 

Deploy model in 

operation 
18 Management buy in All 

3  
Possible 

4 
Major 

12 High (8-12) 

  



 

 

Table 15 Risk Assessment for Data Management and Architecture path 

Step of Roadmap ID 
Risk  

Description 

Resources 

Impacted 

Probability 

Level 
Impact Level 

Risk 

Value 

Overall Risk 

Assessment 

Capable  

ICT Team 

19 Lack of knowledge ALL 
3 

Possible 
2 

Minor 
6 

Moderate  
(4-6) 

20 Lack of Resources ALL 
4 

Likely 
4 

Major 
16 

Extreme  
(15-25) 

Standard Data 

formats 

21 Lack of architecture 
Developers, 
Modellers, 
Operators 

3 
Possible 

2 
Minor 

6 
Moderate 

(4-6) 

22 
Lack of investment 
in data 
management plan 

Developers, 
Modellers, 
Operators, 
Management 

4 
Likely 

4 
Major 

16 
Extreme 
(15-25) 

Sensor & asset 

data in Data lake 
23 

Lack of investment 
in data 
management plan 

data engineer 
2 

Unlikely 
3 

Moderate 
6 

Moderate 
(4-6) 

Context broker: 

Real time 

integration of 

models and data 

24 
lack of knowledge 
(how to set it up) 

IT, data 
management, 
process 
engineers 

2 
Unlikely 

3 
Moderate 

6 
Moderate 

(4-6) 

Model outputs 

(soft sensors) 
25 

Data errors creating 
incorrect soft 
sensor data 

  
4 

Likely 
3 

Moderate 
12 

High 
(8-12) 

Deploy missing 

sensors 
26 

Inability to 
purchase parts 

ALL 
5 

Almost 
Certain 

5 
Catastrophic 

25 
Extreme 
(15-25) 

Automatic data 

validation and 

reconciliation 

27 

Lack of investment 
in proper 
infrastructure 
(context broker) 

ALL 
2 

Unlikely 
4 

Major 
8 

High 
(8-12) 

28 
Inaccurate models 
for reconciliation 

data engineer 
2 

Unlikely 
4 

Major 
8 

High 
(8-12) 

Corporate data 

warehouse 
29 

Lack of investment 
in infrastructure 
(databases and 
servers/cloud) 

IT data 
manager, 
management 

4 
Likely 

5 
Catastrophic 

20 
Extreme 
(15-25) 

  



 

 

 
Table 16 Risk Assessment of Security path 

Step of Roadmap ID 
Risk  

Description 

Resources 

Impacted 

Probability 

Level 
Impact Level 

Risk 

Value 

Overall Risk 

Assessment 

Policy 

30 Lack of knowledge ALL 
3 

Possible 
1 

Negligible 
3 

Low 
(1-3) 

31 
Lack of 
management buyiin 

ALL 
3 

Possible 
3 

Moderate 
9 

High 
(8-12) 

32 Outdated policy ALL 
3 

Possible 
1 

Negligible 
3 

Low 
(1-3) 

Contraints 33 

Policy creating 
issues on 
allowability of 
specific technology 

ALL 
3 

Possible 
4 

Major 
12 

High 
(8-12) 

Transport 34 
Cyber-security of 
data 

ALL 
3 

Possible 
3 

Moderate 
9 

High 
(8-12) 

Encryption 35 
Cyber-security of 
data 

ALL 
3 

Possible 
3 

Moderate 
9 

High 
(8-12) 

Smart monitoring 

of access  
36         

Air gapped 

communication 
37 

not able to ensure 
air gapped 
communication 
(e.g. ensure only a 
machine on 
premise can change 
setpoints) 

  
3 

Possible 
5 

Catastrophic 
15 

Extreme 
(15-25) 

 
  

 


