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Summary 

To determine the size of a water pipe in the tertiary water distribution network, two conditions are of importance. 

Firstly, the customer has to receive a minimal water pressure at all times according to the Dutch drinking water 

decree (Drinkwaterbesluit - Artikel 45). Secondly, preferably the water in the pipe reaches a minimal velocity 

approximately once a day. This will ensure that the pipe has a self-cleaning property (Vreeburg, 2007). However, to 

correctly estimate the water pressure and the velocity under these reference conditions, one needs to be able to 

estimate the water demand first.  

 

This report will investigate the relation between the maximum summed water demand of 𝑁 households  and 𝑁. 

Currently this is done using the 'q-square-root-N' rule. Which states that the Q-max can be estimated by the following 

function 𝑓(𝑁) = 𝑞 ⋅ √𝐹 ⋅ 𝑁 (in general q=0.083 and F is recommended to be equal to 15 which then gives 𝑓(𝑁) =

0.32√𝑁 (E.J.M. Blokker, 2010).  However, this rule overestimates the maximal summed water demand and some 

alternatives have been proposed, for example based on simulation results in (E.J.M. Blokker, 2010). This report will 

reinvestigate this relation using real-life and synthetic data. To determine the maximum of the summed water 

demand of a hypothetical water pipe which supplies 𝑁 households, the available demand patterns of different 

households will be combined. The maximum of the summed water demand will be called Q-max.  

 

Four quantities will be investigated. The first two investigated because the customers should be supplied with a 

minimal pressure (almost) always. On the one hand side the maximal Q-max of a set of days, which will be called 

max(Q-max). On the other hand, WMD wants to guarantee that the minimal pressure is guaranteed on the day on 

which the most water is used, called the max-day. The quantity that will be investigated this requirement will be the 

Q-max corresponding to the max-day and will be denoted with Q-maxmax. The other two quantities of interest are 

investigated because preferably the velocity of the water reaches a minimal level regularly. Firstly, the median of the 

Q-max of a set of days will be determined (denoted by med(Q-max)). On the other hand, WMD would prefer that 

the minimal velocity is reached on an ‘average’ day. For this the median-day will be introduced. The median-day is 

the day on which the total water demand is equal to the median of all total water demands of all measured days. The 

Q-max corresponding to this day will be denoted with Q-maxmed.  

 

These four quantities will be estimated with 2 real-life data sets (measurement frequencies are one second and one 

hour) and one synthetic data set which was generated with SIMDEUM (frequency is one second). SIMDEUM is a 

stochastic model which creates water demand patterns of single households based on the end-use of a household. 

 

It has been shown that Q-maxmax and max(Q-max) are not the same for the available data sets. This implies that 

the Q-max on the maximum day is smaller than the maximum of a set of Q-max. Moreover, it was found that if the 

measuring frequency is an hour (or approximately every hour), the estimates of med(Q-max), Q-maxmed, Q-maxmax 

and max(Q-max) are a lot smaller than if the measuring frequency is a second. Therefore it is recommended that 

the max(Q-max) is estimated instead of Q-maxmax and that data is used in which the measurement frequency is 

one second.  

 

It was observed that the  ‘q-squareroot-N’ rule that is used in the Netherlands (with Q= 0.32 if FU=15) overestimates 

the med(Q-max), Q-maxmed, Q-maxmax and max(Q-max). But rather that to estimate med(Q-max) for a given 

𝑁 one can compute 0.17√𝑁  for 𝑁 < 61  and 0.01 ⋅ 𝑁 + 0.66 for 𝑁 ≥  61. To estimate max(Q-max)  for a given 

𝑁 one can compute 0.26√𝑁 for 𝑁 ≤ 66  and 0.016 ⋅ 𝑁 + 1.04 for 𝑁 > 66.  
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1 Introduction 

1.1 Motivation and goal 

The water distribution network is of vital importance, as it is essential to provide sufficient drinking water to the 

customers. However, designing the water distribution network comes with many challenges. One of these challenges 

is to determine the size of each pipe. If the pipe diameters are too small, the water pressure drops too much when 

water is demanded by many customers at the same time. On the other hand, if the pipe diameters are too large, the 

flow of the water is low. This causes sediment particles to accumulate and incidentally resuspend, this phenomenon 

is the main cause of brown water (Vreeburg, 2007). Thus, two conditions are of importance, the minimal water 

pressure when demand is high and a minimal velocity which can prevent the phenomenon of incidentally 

resuspension and accumulation of particles in the network.  

 

The two conditions can be quantified by the following rules. Firstly, the drinking water decree states that 1000 liters 

of water should be available for delivery during any hour of a day while the water pressure is at least 150 kPa 

(Drinkwaterbesluit - Artikel 45). Secondly, a solution to prevent brown water, as suggested by Vreeburg (2007), is to 

design the system such that the water distribution network is a self-cleaning network. A self-cleaning network is a 

water distribution network that attains a velocity of at least 0.4 m/s once a day. The water utility WMD therefore 

prefers to have a velocity of 0.4 m/s at least once a day on most days.  

 

However, to correctly estimate the water pressure and the velocity under these reference conditions, one needs to 

be able to estimate the water demand first. Therefore, when considering the demand that is to be satisfied through 

any given pipe, it is of importance to investigate the summed drinking water demand of all 𝑁 households that are 

supplied by it. For our purposes specifically, it is sufficient to be able to determine the maximal flow in the pipe during 

the day, which will be notated by Q-max. The Q-max is determined by the, possibly simultaneous, water demand of 

the households supplied by the pipe. Note that, determining the Q-max of the summed drinking water demand of 

𝑁 households is not equal to adding the Q-max of the single households since it is unlikely the peaks occur at the 

same time. Since it is unclear if and when households use water at the same time, it is nontrivial to determine the 

Q-max of the summed water demand of 𝑁 households. 

 

In this report the correlation between 𝑁 and Q-max (respectively the number of households supplied by a pipe and 

the maximal summed flow during a day) will be investigated. This correlation is historically characterized by the so-

called 'q-square-root-N' rule, internationally and in the Netherlands (Buchberger, Blokker, & Cole, 2012). This rule 

states that Q-max is equal to 𝑞 ⋅ √𝑁 ⋅ 𝐹 where 𝑞 is a constant equal to 0.083, 𝐹 is the number of fixture units (in 

general 𝐹 = 15 is recommended) and  𝑁 the number of households that are supplied by the pipe. Some alternatives 

to this rule have been proposed, for example, by Blokker (2010). This report will investigate whether this rule 

describes the correlation correctly or that a different function could describe the correlation more accurately.  

 

1.2 Approach and reading guide 

To determine the correlation between the summed Q-max and 𝑁, the water demand of a combination of households 

needs to be investigated. To investigate the water demand of a household, one could either analyse real-life water 

demand data or use a simulation to approximate the water demand. Even though simulations generate synthetic 

data, it is possible to generate very large amounts of data. For this report the synthetic data is generated by a 

stochastic model called SIMDEUM. SIMDEUM has been extensively validated in (E.J.M. Blokker, 2010).  Both the 
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available real-life data and the generated synthetic data will be used to investigate the correlation between 𝑁 and 

Q-max.  

 

The structure of this report is as follows. First, the problem will be described in a more formal setting and the notation 

will be introduced in Chapter 0. Second, the data that will be used (real-life and synthetic) will be described and a 

summary of SIMDEUM will be given in Chapter 0. Then, the methods used to analyse the data will be explained and 

the results will be given and compared in Chapters 0 and 0 respectively.  Finally, conclusions will be drawn and 

possible directions for future research will be given in Chapter 0. 
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2 Formal problem formulation 

As described in the introduction, the  quantity of interest is called Q-max. Given a waterpipe 𝑃 in the tertiary system, 

let 𝐻𝑃 be the set of households supplied by 𝑃. Furthermore, let 𝑁 = |𝐻𝑃| = {be the number of households supplied 

by 𝑃}. Let 𝑡0, … , 𝑡𝑇 be the times at which the flow was measured, where 𝑇 is the total amount of measurements on 

day 𝑑. Now let 𝑋𝑑,ℎ(𝑡𝑖) be the total amount of water used by household ℎ in ( 𝑡𝑖−1, 𝑡𝑖] on day 𝑑. Now, the amount 

of water used by all households ℎ ∈ 𝐻𝑃 in ( 𝑡𝑖−1, 𝑡𝑖] with 𝑖 ∈ {1, … , 𝑇} on day 𝑑 is defined as 𝑋𝑑,𝑃(𝑡𝑖)=∑ 𝑋𝑑,ℎ(𝑡𝑖)ℎ∈𝐻𝑃
. 

Now, Q-max can be defined as Q-max𝑑,𝑃 = max
𝑡∈{𝑡1,…,𝑡𝑇}

𝑋𝑑,𝑃(𝑡) = max
𝑡∈{𝑡1,…,𝑡𝑇}

∑ 𝑋𝑑,ℎ(𝑡)ℎ∈𝐻𝑃
. As can be seen Q-max𝑑,𝑃 is 

dependent on the waterpipe 𝑃 (and thus on 𝑁) and on the day 𝑑. However, the interest of this project was not to 

determine the value of Q-max𝑑,𝑃 of any specific waterpipe or on any specific (deterministic) day. The interest lies 

with a general correlation between the number of households supplied by a pipe on an ‘median day’ and ‘maximal 

day’ and the Q-max on these day. The interest lies with a ‘median day’ to ensure that the self-cleaning velocity is 

attained at at least half of the days. Moreover, to ensure that the minimal water pressure is (almost) always reached 

the ‘maximal day’ is considered. Therefore, the maximal flow of an ‘median day’ and a ‘maximal day’ will be 

investigated.  

 

The ‘median day’ and ‘maximal day’ can be defined in different ways. Two ways will be used and explained in this 

report. Firstly, given data of days 𝑑0, … , 𝑑𝑚 the median and maximum of the set of Q-max𝑑𝑖,𝑃 with 𝑖 ∈ {0, … , 𝑚}  are 

considered. These quantities will be useful to evaluate the pressure and velocity in the pipe on (almost) every day 

and on approximately half of the days. Secondly, the Q-maxmedian-day,𝑃 and Q-maxmax-day,𝑃 are considered. To define 

the median- and max-day some extra notation will be given. Let 𝑋̂𝑑,𝑃 =  ∑ 𝑋𝑑,𝑃(𝑡𝑗)𝑇
𝑗=0 , which is the total amount of 

water used by the households supplied by pipe 𝑃 on day  𝑑. Given data of days 𝑑0, … , 𝑑𝑚, let  𝑋̂(𝑖),𝑃 with  𝑖 ∈

{0, … , 𝑚} be the order statistic of 𝑋̂𝑑,𝑃. Meaning that 𝑋̂(𝑖),𝑃 is the i’th smallest value of {𝑋̂𝑑0,𝑃, … , 𝑋̂𝑑𝑚,𝑃}.  

Now the median-day can be defined as:  

median-day = {
𝑑𝑖:  𝑋̂𝑑𝑖,𝑃 =  𝑋̂

(⌊
𝑚+1

2
⌋),𝑃

     w.p. 0.5

𝑑𝑖:  𝑋̂𝑑𝑖,𝑃 =  𝑋̂
(⌈

𝑚+1

2
⌉),𝑃

     w.p. 0.5
  , 

( 1 ) 

  , 

and the max-day can be defined as:  

max-day = 𝑑𝑖 : 𝑋̂𝑑𝑖,𝑃 =  𝑋̂(𝑚),𝑃 . 
( 2 ) 

Thus Q-maxmedian-day,𝑃 and Q-maxmax-day,𝑃 will be useful to evaluate the pressure and velocity in the pipe on the days 

with the median total water demand and the maximal total water demand. 

Some shorthand notation for the these quantities will be given. The median and maximum of the set of Q-max𝑑𝑖,𝑃 

for 𝑖 ∈ {0, … , 𝑚}  will from now on be denoted by med(Q-max𝑃) and max(Q-max𝑃) respectively. Furthermore, 

Q-maxmedian-day,𝑃 and Q-maxmax-day,𝑃 will be denoted by Q-maxmed,𝑃 and Q-maxmax,𝑃 respectively.  

 

On a max-day a lot water is demanded, so one would expect the peak to be larger than on average. On a median-day 

one would expect the peak to be close to the average. Furthermore, under the assumption that the Q-max of a 

median-day is equal to the median of all peaks (in the to be considered timespan) and that the Q-max of a max-day 

is equal to the maximum of all daily peaks, we have that med(Q-max𝑃) = Q-maxmed,𝑃 and that max(Q-max𝑃) =

Q-maxmax,𝑃. However, this assumption might be unrealistic. In this report all four quantities will be estimated and 

compared. This will give an indication on whether or not this assumption could hold. Note, that an in depth analysis 

of the correlation between Q-max and the total water demand of a day is left for future research. 
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At the moment of this internship no data off all households supplied by a specific pipe is available to the author. What 

is available, is a collection of water demand time-series (real-life measurements and synthetically generated data) of 

different specific households that are unconnected in terms of their connection to the drinking water distribution 

network. It will be assumed that a random sampling of 𝑁 households from an available data sets provides a set of 

households which is representative of 𝐻𝑃 for some hypothetical pipe 𝑃. Therefore the following correlations will be 

investigated. The correlations between Q-maxmed and 𝑁, between Q-maxmax and 𝑁, between med(Q-max) and 𝑁, 

and between max(Q-max) and 𝑁 will be investigated. With Q-maxmed, Q-maxmax, med(Q-max), and max(Q-max) 

being equal to Q-maxmed,𝑃, Q-maxmax,𝑃, med(Q-max𝑃), and max(Q-max𝑃) respectively for some  hypothetical pipe 

𝑃. Even though correlations will be determined for hypothetical pipes, under the assumptions stated above these 

will still be representative of real pipes. Since the interest of this report lies with a general relation between 𝑁 and 

Q-max on a ‘median day’ and ‘maximal day’,  the correlation between Q-maxmed and 𝑁, between Q-maxmax and 𝑁, 

between med(Q-max) and 𝑁, and between max(Q-max) and 𝑁 are still valuable for the field.  
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3 Data description 

This report will investigate the correlation between the ‘median’ and ‘maximal’ Q-max and number of households 

supplied by a pipe. Two real-life data sets were used, a combined data set from Brabant Water (BW) and Waterbedrijf 

Groningen (WBG) and a data set from Vitens. A description of  both data sets will be given in Sections 3.1 and 3.2 

respectively. Finally, in Section 3.3 an overview of SIMDEUM will be given as well as a description of how the data set 

was generated.  

3.1 Data set Brabant water and Waterbedrijf Groningen 

Two data sets from Brabant Water (BW) and Waterbedrijf Groningen (WBG) were available (which were already pre

processed). The data was collected with a measuring device which was installed in multiple households in Brabant a

nd Groningen (mostly employees of the corresponding water companies). The devices were not all installed simulta

neously, however they were all installed for some time in between  02-11-2020 and 31-12-2021. In some cases the 

device was installed multiple times at the same household (at most 3 times). The device measures the water flow go

ing into the house every second. If the flow is non-zero the value is stored. Thus, the data contains the water flow (i

n l/s) into a household of every second (during which the flow was not zero) of a day. The same measurement devic

es were used for both BW and WBG. 

 

In total the water use was measured for 76 households (on average 2,95 users per household). In Figure 1, a 

histogram can be found with the number of measured days per household. In total 4056 days were measured. As 

can be seen for many of the households less than 25 days were measured. For a few households, however, more 

than 100 days were measured. The average of the number of measured days is 53.4 and the median is 20.5. This 

shows, as can also be seen in Figure 1 that the number of measured days per household is skewed. If one would like 

to use all data that is available, some households would be over represented whilst others only having a few 

measured days. This could lead to a different distribution of the household type than expected. 

 

The data was not measured on the same dates for all households (in some cases the same measurement devices 

were used for multiple households). In Figure 2 the number of measured days per month are given. It can be observed 

the number of measured days per month is irregular. For example, in October zero days were measured and in 

December 1036 days were measured. Thus, also the number of measured days per month is irregular. This is of 

importance since it is known that water demand is amongst other things, related to the time of year. 
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Figure 1: Histogram of number of measured days per household Figure 2: Histogram of number of measured days per month 
 

Out of the 4056 measured days, 2919 measured days were weekdays (274 from BW and 2645 from WBG). After 

removing the weekend days the distribution of the number of measured days per household and per month changed 

only very slightly. The histograms of the number of measured days per household and per month can be found in 

Figure 3 and Figure 4. It can be observed that the number of measured days per household as well as the number of 

measured days per month are irregular.  

 

 

 
Figure 3: Histogram of number of measured days per household Figure 4: Histogram of number of measured days per month 

 

3.2 Data set Vitens 

The data set from Vitens consists of data collected from 1414 households in Westeinde (a neighbourhood in 

Leeuwarden, the Netherlands). To collect this data, approximately every hour a measuring device stores the meter 

reading. Given the readings and the measuring times the average flow between two consecutive measurements can 

be computed. On average 708 unique days were measured (minimum is 202 and maximum is 718). A histogram of 

the amount of days measured per household can be found in Figure 5. From this histogram it is apparent that most 

of the households have data on at least 600 days.  

 

 

 

Figure 5: Histogram of the number of measured days per household 

(before cleaning) 

 

 

Before using the data to analyse the relation between 𝑁 and the maximum flow of a day, the data needs to be 

cleaned. This is necessary since in some cases there are too few measurements in a day, too much time between 

measurements or measuring errors, which can cause imprecise results.   
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Firstly, if there are too few measurements of a day of one household, the water demand is averaged over quite a 

long time period. This could lead to a lower maximal daily flow since the water use is averaged out over more time. 

Therefore, it was decided that only days with at least 12 measurements would be used.  

 

Secondly, if the time between consecutive measurements is large (the water level changed), the water use is again 

averaged out over a long time period. This could again lead to a lower Q-max. the time between all consecutive 

measurements off all households can be found in the kernel density plot in Figure 6. As can be seen, the kernel 

density plot has a peak between 0 and 5 and has a relatively long tail. This is due to the fact that most of the 

measurements were read at approximately one hour after  the previous measurement. However, in some rare cases 

the time between two measurements is relatively long. If there is a long time between two measurements, the water 

use is averaged over a very long time period. This will cause the peaks of an individual household to be very low. 

When summing only a limited amount of households this could lead to a too low summed Q-max. Therefore, only 

days with at most 8 hours in between measurements will be investigated.   

 

Furthermore, it was observed that in the data of some households a measurement error is contained, which can lead 

to inaccurate results. For example, in a data set the measurements as in Table 1 were contained. To remove these 

outliers, only days are contained in the data set for which the difference between two measurements is at most 5𝑚3. 

This is set to a quite high number (average water demand of one person per day is 0.128𝑚3 (WMD, 2022) because 

the peak behaviour of the water demand is of importance in the analysis of Q-max. Note, that an alternative method 

too filter out these measurement errors would be to remove all measurements for which it holds that the difference 

between the next measurement and the measurement is negative. However, due to time constraints this is left for 

future research. 

 

 

 

Figure 6: Density of time between measurements  

 

 
Table 1: Example of measurement error 

Timestamp Measurement 

(𝑚3) 

2020-08-24 08:57 94.686 

2020-08-24 09:59 208.541 

2020-08-24 10:58 94.697 

2020-08-24 11:59 94.711 

 

After cleaning the data as described above 979 622 unique measured days remained (1 000 983 before cleaning). 

Thus, 2.13% of the days were discarded. In Figure 7, the average number of measured days per household per month 

are given. Note, that all measurements were performed between 2020-04-01 and 2022-03-21, which explains why 

in march there are relatively fewer measured days. As can be seen, the difference between the average number of 
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measured days before and after cleaning is mainly visible in the month August, September and December. 

Investigating the reason of the uniformity of the inaccurate days (that were removed) lies outside the scope of this 

report.  A histogram of the number of unique days per household of the data set after cleaning can be found in Figure 

8. It can be observed that the peak at 700 is a bit lower and that mean number of measured days decreased a bit 

(from 707.9 to 692.8).  

 

  
Figure 7: Histogram of average number of measured days 
per household per month 

Figure 8: Histogram of number of unique days per household after cleaning 

 

3.3 SIMDEUM data 

Blokker developed a water demand model called SIMDEUM (Simulation of water Demand; an End-Use Model) (E.J.M. 

Blokker, 2010). This model can be used to simulate water use of a single household. First the model, will be described 

in Section 3.3.1. Then the assumptions underlying of SIMDEUM will be explained in Section 3.3.2, after which a short 

description will be given of the way the data was created for this project in Section 3.3.3.  

3.3.1 SIMDEUM short model description 

 

The exact details of the model SIMDEUM can be found in (E.J.M. Blokker, 2010). Also a python implementation of 

SIMDEUM is available as open source (Steffelbauer, Hillebrand, & Blokker, 2022), note that this is a new open source 

version of SIMDEUM which could still contain some mistakes. Furthermore, all statistics that have been used, can be 

found in this open source code (in the data file). A short overview of how SIMDEUM works will be given here.  

SIMDEUM is a specific version of a rectangular pulse model. SIMDEUM simulates a water demand pattern of a 

household at time 𝑇, which is denoted by 𝑄(𝑇). 𝑄(𝑇) can be defined as follows: 

𝑄(𝑡) = ∑ ∑ ∑ 𝐵(𝐼𝑖𝑗𝑘 , 𝐷𝑖𝑗𝑘 , 𝜏𝑖𝑗𝑘 , 𝑡)
𝐹𝑗𝑘

𝑖=1
𝑁
𝑗=1

𝑀
𝑘=1  , with  

𝐵(𝐼𝑖𝑗𝑘 , 𝐷𝑖𝑗𝑘 , 𝜏𝑖𝑗𝑘 , 𝑡) =  {
𝐼𝑖𝑗𝑘     if  𝜏𝑖𝑗𝑘 < 𝑡 < 𝜏𝑖𝑗𝑘 + 𝐷𝑖𝑗𝑘

0       else                                       
. 

Here 𝑀 is the number of end-uses, 𝑁 is the number of users and 𝐹𝑗𝑘 is the number of uses per end-use per user. 

Furthermore, 𝐼𝑖𝑗𝑘  is the pulse intensity (in L/s), 𝐷𝑖𝑗𝑘  is the duration of the pulse (in seconds) and 𝜏𝑖𝑗𝑘  is the time at 

which the pulse starts.   

 

The simulation starts by defining the objects house and end-use. The object house contains the house type (one-

person, two-person or family), the number of users (𝑁) and information about the users (age category,  

out-of-home job and gender). On average SIMDEUM assumes  2.29 users per household. The statistics can be found 

in the Appendix in Table 8. The end-use contains information about the amount of appliances (𝑀), the kind of 

appliances, the distribution of the duration and intensity of the appliance. A house can have up to eight kinds of end-

uses: bathroom tap, bathtub, dishwasher, kitchen tap, outside tap, shower, washing machine, and wc. Both the 
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object house as well as the object end-use are randomly created using statistics found in (Blokker, 2006). These 

statistics are based on CBS data and TNS-NIPO data and are thus representative of the Netherlands. The exact 

statistics can be found in the data file of the pySIMDEUM code (Steffelbauer, Hillebrand, & Blokker, 2022).  

 

After the house and the end-use are created the values of 𝐹𝑗𝑘 , 𝐼𝑖𝑗𝑘 , 𝐷𝑖𝑗𝑘  and 𝜏𝑖𝑗𝑘  are determined. As an example, to 

determine the frequency of the end-use bathtub of a child a random sample is taken from  

𝐹𝑐ℎ𝑖𝑙𝑑,𝑏𝑎𝑡ℎ𝑡𝑢𝑏 ∼ Poisson(0.085714). The distribution of the frequency per end-use type can be found in Table 2. In 

a similar way are 𝐼𝑖𝑗𝑘 , 𝐷𝑖𝑗𝑘  determined, the exact used distributions of 𝐹𝑗𝑘 , 𝐼𝑖𝑗𝑘 , and 𝐷𝑖𝑗𝑘  can also be found in the data 

file in (Steffelbauer, Hillebrand, & Blokker, 2022). These statistics were determined by Blokker (2006).  

 

 

After determining the duration, intensity and frequency of all users and end-uses, the starting times 𝜏𝑖𝑗𝑘  need to be 

determined. For this the state of the user 𝑗 (at work, at home, asleep or awake) needs to be determined first. 

Therefore, the presence will be determined for all users (containing 4 times: time of getting up, time of going to work, 

duration of being away, duration of being asleep). These times, will depend on whether or not the date is a weekday 

or weekend-day, (however, note that this is not yet implemented in the pySIMDEUM version of 26-10-2022). Thus, 

the data created with this version of SIMDEUM only contains simulated weekdays. The diurnal pattern (thus, up, go, 

away, sleep times) are determined by normal distributions with a mean and standard deviation that differ per  user 

category. The parameters of the normal distribution per user category can be found in the data file in (Steffelbauer, 

Hillebrand, & Blokker, 2022) as well as in chapter 3 of (E.J.M. Blokker, 2010). 

 
Table 2: Distribution of frequency per end-use 

End-use Distribution of frequency User kind (if applicable) 𝑁 (if applicable) 

Bathroom tap Poisson(4.1)   

Bathtub Poisson(0.085714) Child  

 Poisson(0.014286) Teen  

 Poisson(0.028571) Working adult  

 Poisson(0.028571) Home adult  

 Poisson(0.028571) Senior  

Dishwasher Poisson(0.2143)  1 

 Poisson(0.2286)  2 

 Poisson(0.1857)  3 

 Poisson(0.2000)  4 

 Poisson(0.1429)  5 

Kitchen tap NegBin(𝜇 = 10.1, 𝜎 = 7)  1 

 NegBin(𝜇 = 12.7, 𝜎 = 7.2)  2 

 NegBin(𝜇 = 12.8, 𝜎 = 7.7)  3 

 NegBin(𝜇 = 13.1, 𝜎 = 8.4)  4 

 NegBin(𝜇 = 13.5, 𝜎 = 9.1)  5 

Outside tap Poisson(0.44)   

Shower Binomial(0.48) Child  

 Binomial(0.67) Teen  

 Binomial(0.79) Working adult  

 Binomial(0.79) Home adult  

 Binomial(0.69) Senior  

Washing machine Poisson(0.32)  1 

 Poisson(0.29)  2 

 Poisson(0.29)  3 
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 Poisson(0.27)  4 

 Poisson(0.29)  5 

Wc male: Poisson(3.8) 

female: Poisson(5.4)  

Child  

 male: Poisson(4.1) 

female: Poisson(5.1)  

Teen  

 male: Poisson(5.3) 

female: Poisson(6.8)  

Working adult  

 male: Poisson(7) 

female: Poisson(7)  

Home adult  

 male: Poisson(7.4) 

female: Poisson(6.8)  

Senior  

 

 

After 𝐹𝑗𝑘, 𝐼𝑖𝑗𝑘 , 𝐷𝑖𝑗𝑘  and the presence of the users are determined, the starting times of every time an end-use is used 

𝜏𝑖𝑗𝑘  will be determined. Two vectors will be created, which represent how likely it is that an action (of a specific end-

use and user) is started during a every second. Firstly, a vector is created with the probabilities that a specific end-

use is activated during every second based on when it is more likely to use that end-use (for example, it is more likely 

to put on the dishwasher after eating). The exact values of these probabilities can be found in the pySIMDEUM core 

(for every end-use separately). Secondly, a probability is determined which represents the probability that a specific 

end-use is activated based on the presence of the user. To implement the idea of peak hours, every second of the 

day is categorized into one of the following categories: peak, normal, away and night. Based on the randomly 

determined presence of a user (up, go, home, sleep), the categories are defined as in Table 3. Based on this category 

a probability is determined for every second which represents the probability that an end-use is started during that 

second. This probability is equal to  
0.65

number of seconds in category peak
 for all seconds in the peak category, 

0.65

number of seconds in category normal
 for all seconds in the normal category, 0 for all seconds in the away category, and 

0.015

number of seconds in category night
 for all seconds in the night category1.  Both vectors with probabilities are combined and 

normalized. Based on the combined probabilities a starting time is randomly selected for every end-use.  

 
Table 3: Categorise time intervals into peak, normal, away and night 

Start time of interval  End time of interval Category 

Sleep Up Night 

Up Up+30 minutes Peak 

Up+30 minutes Go-30 minutes Normal 

Go -30 minutes Go Peak 

Go Home Away 

Home Home+30 minutes Peak 

Home+30 minutes Sleep-30 minutes Normal  

Sleep -30 minutes Sleep Peak 

 

 

After the starting time is selected, the intensity of the end-use is added to the total water use for all times in the 

interval [starting time, the starting time + duration]. 

 

1 Note that in the current version of pySIMDEUM (October 2022) there is a typo which states that the probability of an end-use starting during a second at 

night is set to 0.15/(number of seconds in category night) . Later the probabilities are normalized, so no problem occurs with respect to the 

probabilities summing up to one. However, this causes more end-uses during the night than what would be expected (1.5% of the total water use is used 

during night (E.J.M. Blokker, 2010)). 
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3.3.2 Assumptions of SIMDEUM 

 

SIMDEUM creates simulated data which, under some assumptions, represents the water demand pattern of a single 

household. The assumptions will be given here. 

 

Firstly, it is assumed that the water demand behaves as a block model, meaning that the intensity of the water 

demand of one frequency of an end-use is constant between the starting and end times. In real life, however, it  could 

occur that the intensity is not constant from start to end. 

 

Secondly, it is assumed that every household can be categorized as one of the three defined house types and has no 

other appliances (or subtypes) than described in Section 3.3.1. Furthermore, it is assumed that the distributions used 

to randomly select the house type, the users (including age category and gender) and number of appliances, 

correspond to real-life. In real-life, more possible household types would be possible as well as more kinds of water 

demanding appliances. Furthermore, in real-life it is possible for a household to consist of more than 5 people (e.g. 

large families or student houses).  

 

Thirdly, it is assumed that the frequency , intensity and duration of each end-use type in real-life follow the same 

distributions as used by SIMDEUM. Note, that in real-life this could differ per household and per appliance.  

 

Fourthly, it is assumed that the starting times of all end-uses are distributed as in real-life. Note, that this includes , 

for example, the assumption that the peak hours are as described in Table 3 and that the diurnal pattern follows a 

normal distribution with different parameters as described in (E.J.M. Blokker, 2010) and implemented in SIMDEUM. 

Furthermore, the assumption also includes the assumption that the starting times in real-life follow the same 

probabilities as used by SIMDEUM.  

 

Finally, it is assumed that all users and end-uses are independent. A first example would be that the distribution of 

the presence of a user is independent of the, for example, age or presence of the possibly other users of the house.  

Secondly, the starting times of every time an appliance is used are independent of each other.  

 

Under these assumptions SIMDEUM creates a water demand pattern of a random household in the Netherlands. 

Even though some of the assumptions might seem slightly unrealistic, SIMDEUM has been validated in (E.J.M. 

Blokker, 2010). To validate SIMDEUM several characteristic parameters were determined from the water demand 

patterns. One of these characteristic parameters is the maximal flow of a household of the day, as well as the total 

volume of the day. 

3.3.3 SIMDEUM Data description 

 

SIMDEUM can be used to create a synthetic data set containing a simulated water use during the past second. In 

total 10650 data sets were created with the default statistics of SIMDEUM (which are based on (Blokker, 2006)). 

Changing these statistics to more recent estimates is left to future research. Every data set consists of 100 simulated 

water demand patterns of one day. All non-zero simulated flows are stored and used to estimate the maximal flow 

of a summed water demand pattern of 𝑁 households. The methods used to estimate this quantity are described in 

the next chapter.  
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4 Methods 

To investigate the correlation between the number of households supplied by the pipe and the maximum flow during 

a day in that pipe, the summed flow has to be determined. One could determine the Q-max from data, for example, 

the data sets described in Section 0:   
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Data description. However, no timeseries data with the flow in a pipe is available to the author. Nonetheless, 

timeseries data with the water use of single households is available. This could be used to estimate Q-max. One could 

also simulate the water-use from a household with SIMDEUM. This could then also be used to estimate Q-max.  

 
When a set of data is provided, either synthetic or non-synthetic, two methods will be given that can estimate Q-max 
on ‘average’ and ‘maximally’. The two variations as described in Section 0:   
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Formal problem formulation. The first method estimates med(Q-max𝑃) and max(Q-max𝑃) for a given value of 𝑁. 

The second method estimates Q-maxmed,𝑃 and Q-maxmax,𝑃 for a given value of 𝑁. Note, that the, by method 1 and 

method 2, obtained values estimate different quantities. However, both quantities (the median of the Q-maxes of 

random days and the Q-max on a median-day or max-day) provide insight into the maximal flow of Q-max on 

‘average’ and ‘maximally’. 

4.1 Data sampling method 1 

To estimate med(Q-max) and max(Q-max) data of different households is combined. This data sampling method 

estimates the median and maximum of a set of 𝑥 Q-max of hypothetical streets on hypothetical days. This method 

is mainly useful for data sets with a limited amount of measurements per household (with possibly different 

measurement dates). On the other hand, by creating hypothetical households and hypothetical days, possibly present 

street and day specific information could be lost. The method to determine the maximal flow of the summed water 

use of random days of 𝑁 households can be described by the following outline: 

 

1. Select 𝑁 random households. 

2. Select a random measurement date of every selected household. 

3. Add the demand patterns of the 𝑁 randomly selected days to determine the summed demand pattern. 

4. Determine the maximum of the summed demand pattern Q-max. 

5. Repeat the above 𝑥 times and take the median (and maximum) of the found Q-max. 

  

For this method to converge to the desired quantities (med(Q-max) and max(Q-max)) some assumptions have to 

be made. Firstly, it is assumed that repeatedly selecting 𝑁 random households from the data set represents a 

randomly selected pipe with 𝑁 households accurately. Secondly it is assumed that the water demand pattern of any 

weekday is identically distributed. Note that only the data of the weekdays is combined, since according to, for 

example, Alvisi et. all.  (Alvisi, Franchini, & Marinelli, 2007) the hourly water demand depends on the diurnal pattern 

which differs for week- or weekend days. Thirdly, it is assumed that the summed demand pattern of the randomly 

selected households follows the same distribution as the demand pattern of a hypothetical pipe. Under these 

assumptions the quantity found from method 1 computes max
𝑡

∑ 𝑋𝑑𝑖,ℎ𝑖

𝑁
𝑖=1 (𝑡). Where ℎ𝑖  are the 𝑁 randomly selected 

households, 𝑑𝑖  is the corresponding random selected day of household ℎ𝑖  and 𝑋𝑑𝑖,ℎ𝑖
(𝑡) is the water demand pattern 

of household ℎ𝑖  on day 𝑑𝑖. 

 

Three different versions of this method were implemented and compared. The reason behind the alternative 

versions, is the amount of reuse of the data. Reusing data can lead to an added correlation between the different 

values of Q-max. 

 
Algorithm 1: Method 1.1 for different values of  𝑁  

Input: ndays sum over number of unique days of every household, dataframe with Date, FlowPerSecond, id, Time. 

1. Define narray to contain all possible values of 𝑁 and sort in a descending order. 

2.  Let nreps≤ ⌊
ndays

∑ narray
⌋ ∈ ℕ . 

3. Define Q = zero matrix with size len(narray) by nreps. 

4. For m in 0,…,len(narray)-1 do: 

5.   n=narray[m] 

6.  For i in 0,…,nreps-1 do: 

7.   Let ids= all id's data still have at least one unused day. 

8.    Select n random id's (households) from the ids array (without  repetition). 

9.    Create an empty dataframe tmp. 

10.    For j in 0,…,n-1 do: 
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11.      Select a random unused day of the household with the j'th                                                                                                 

randomly selected id. 

12.     Add this day to a dataframe tmp and remove it from the dataframe df. 

13.    Sum FlowPerSecond grouped by Time. 

14.    Let Q[m,i]= maximum over all times of the summed FlowPerSecond. 

 

 

Version method 1.1 does not reuse any of the data, by removing the data of the randomly picked day and household 

from the data frame. In Algorithm 1 a pseudocode can be found of method 1.1. Note, that this method introduces a 

correlation between the order in which Q-max for the different values of 𝑁 is computed and the households used 

(this is especially the case if a large part of the available data is used). For example, for the final value of 𝑁 for which 

a Q-max is computed (=min(narray) in the pseudocode) it is very likely that households are selected with many days, 

since they are most likely the once that still have unused days. Note, that if the number of measured days per 

household is quite uniform (meaning all households have approximately the same amount of measured days), this is 

of less importance.  

 

Version 1.2 does reuse the data for different values of 𝑁. In other words, for every value of 𝑁 the data is used to 

determine the maximal summed flow of the randomly selected days and households without reusing any data. 

However, for another value of 𝑁 the same data may be used. This has the advantage that more data is available for 

every value of 𝑁 which leads to a better estimation of the summed Q-max. However, reusing the data could change 

the correlation between 𝑁 and the corresponding estimate of med(Q-max𝑃) and max(Q-max𝑃). A pseudocode of 

method 1.2 can be found in the Appendix in Algorithm 3. 

 

Version 1.3 reuses the data in another way. This version selects a random day of any household instead of a random 

day of a random household. Note, that the amount of measured days is not uniform among the households. This will 

lead to the households with many measured days being picked more often than households with fewer measured 

days. Thus, step 1 and 2 as described in the outline are replaced by randomly selecting a day of any of the households. 

Furthermore, the day selected is not removed from the data frame (and reusing this same data for another repetition 

could occur). Note, that depending on the number of repetitions and the size of all possible values of 𝑁 the data 

could be reused extensively. This can cause correlations within the results. A pseudocode of version 1.3 of method 1 

can be found in the Appendix in Algorithm 4. 

4.2 Data sampling method 2 

Method 2 estimates another quantity, namely Q-maxmed,P and Q-maxmax,𝑃 for different values of 𝑁. Also in this case, 

data of the same date of different households is not necessarily needed. However, it is preferred that only data from 

the same days are combined since many more variables could influence the water demand pattern of a household, 

for example, the temperature. Method 2 combines the matching dates of 𝑁 random households and determines the 

median-day and max-day based on their total daily water demand. Thus, with the resulting estimates describe the 

maximal flow of the day on which the most water was used (of all days in on which measurements were performed) 

and of the day on which the median amount of water was used. Method 2 can be described by the following outline: 

 

1. Select 𝑁 random households. 

2. Determine the median-day and max-day of the summed demand pattern of the 𝑁 selected households. 

3. Add the flow during the median-day and add the flow during the max-day of all selected households to 

determine the summed flow on a median-day and max-day. 

4. Determine the maximum of the summed flow of both the median- and max-day. 
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This method again assumes that the summed water demand of a collection of 𝑁 random households is representative 

of the summed water demand of a waterpipe. Under this assumption the quantity found from method 2 computes 

max
𝑡

(∑ 𝑋𝑑med,ℎ𝑖

𝑁
𝑖=1 (𝑡) ) and max

𝑡
(∑ 𝑋𝑑max,ℎ𝑖

𝑁
𝑖=1 (𝑡)). Where ℎ𝑖  are the 𝑁 randomly selected households, 𝑑median 

and 𝑑max are the found median- and max-days of days that were measured and on which all random selected 

households have at least 1 measurement, and 𝑋𝑑median,ℎ𝑖
(𝑡) and 𝑋𝑑max,ℎ𝑖

(𝑡) are the collection of measurements of 

household ℎ𝑖  on the found median-day and max-day respectively. 

 

A pseudocode of this method can be found in Algorithm 2.  

 
Algorithm 2: Method 2 

Input: List with cleaned dataframe of every household (in the dataframe  all measured values and corresponding 

timestamps are contained. 

Note,  a cleaned dataframe is used, where for every day of every household the maximum time between 

measurements is computed. If this time is more than 7200 seconds (2 hours) the day is discarded. 

1. For n in 1,…,20 do: 

2.   For i in 1,…,nreps do: 

3.    Let files_selection = random selection of households from the list. 

4.    Combine these households in one dataframe. 

5.     Let dates= all dates such that every household in files_selection has measurements on 

that day. 

6.    Let dataframe= dataframe where the date of the timestamp is in dates and drop the id. 

7.    Let df_day = summed Value in dataframe by date and select only the days that are in 

dates.  

8.    Let df_hour = summed Value in dataframe by hour and select only the days that are in 

dates.  

9.    Let median= the median of df_day and let median_day = corresponding day as defined 

in equation ( 1 ). 

10.    Let Qn= maximum of Value in df_hour where the date is equal to median_day. 

11.    Let max_day = date corresponding to the maximum of df_day as defined in  

equation ( 2 ). 

12.    Store n, Qn and Qn_max. 

 

4.3 Fitting method 

 

To fit possible curves through the results of method 1 and method 2, the scipy.optimatize package in python is used. 

  

The curvefit method applies a non-linear least square to fit a function of choice to the results. The non-linear least 

square approach minimizes the following function to determine the parameters of the chosen function: 

∑(𝑦𝑖 − 𝑓(𝑥𝑖 , 𝜷))2

𝑚

𝑖=0

 

where 𝑚 is the number of data points, 𝑦𝑖  is the value of the i’th data point, 𝑥𝑖  is the corresponding value of 𝑁 and 𝜷  

is a vector with the parameters of the function.   

 

Multiple functions were fit to the found estimates from methods 1 and 2. Firstly, the function 𝑓(𝑥) = 𝑎√𝑥 + 𝑏𝑥 was 

fit. Currently WMD uses the  'q-square-root-N' rule for 𝑁 < 200 houses and a linear function for 𝑁 > 200. In the 

limit this function would behave linearly. Furthermore, the function 
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𝑓(𝑥) = {
𝑎√𝑥     for x>T

𝑎√𝑇 + (𝑥 − 𝑇)
𝑎

2√𝑇
    else

  was fit. This function is equal to the 'q-square-root-N' rule for 𝑁 < T houses and 

a linear function for 𝑁 > 𝑇. However, the parametrization of the 'q-square-root-N' rule and the linear part of the 

function are different. Another function that was fit is 𝑓(𝑥) = 𝑎 log(𝑥 + 1) + 𝑏𝑥. Note that log(0 + 1) = 0 and 

𝑓(0) = 0. Since the Q-max of zero households is zero, this is a characteristic attribute of the correlation. 

Furthermore, in the tail a logarithmic function grows very slowly (slower than a square root). Therefore, also this 

function behaves as a linear function for large values of 𝑁. Furthermore, it was fit to see if an alternative to the square 

root might fit the estimates as well. Finally, a the following linear function was fit 𝑓(𝑥) = 𝑎𝑥, since for larger values 

of 𝑁 it is expected that the maximal daily flow behaves linearly with respect to 𝑁.  

 

4.4 Implementation of methods 

The data sets as described in Section 0:   
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Data description are not all suitable for both methods as described above. The BW+WBG data set was analysed with 

method 1. Since this data set only has a very limited amount of data measured on the same day, method 2 was not 

applied. The Vitens data set had more data available (which were also measured on the same dates), and thus this 

data was analysed with method 2. The SIMDEUM data was analysed with both method 1 and method 2. An overview 

of which data set was analysed with which method, for which values of 𝑁 and for how many repetitions can be seen 

in Table 4.  

 

To estimate med(Q-max) from the BW+WBG data set not enough data is available to only combine the data that 

was measured on the same date. Therefore random days will be combined to approximate a hypothetical day. One 

could argue that combining data from different dates and possibly the same household could result into 

unrepresentative results. Therefore, only weekdays were selected. This gives the assumption that the water demand 

patterns of different weekdays are identically distributed.   

 

The max(Q-max) can be determined from the BW+WBG data set. However, this is not done extensively. This is due 

to the fact that only a limited amount of data was available. Therefore, the probability of measuring , for example, 

the yearly maximum is small since for more than half of the household less than 21 days were measured. This could 

make the estimation of max(Q-max) less accurate.  Furthermore, some very high values are still contained in the 

data set. Expectedly, these would dominate the estimate of max(Q-max). Filtering out these values by distinguishing 

them from high demands is left for future research. Note, that they are estimated briefly to illustrate that for small 

values of 𝑁 they are close to the results of the SIMDEUM data set. 

 

To illustrate the effect of a lower measuring frequency, the BW+WBG data set was also aggregated to hourly data. 

This then was analyzed with method 1 (version 1.3).  

The Vitens data set was analyzed with method 2.  

 

To the SIMDEUM data set both method 1 and 2 were applied. In the case of method 1, a variation of version 1 was 

applied. Namely, N households were selected after which the maximal summed flow of all (100) simulated days were 

determined. This was repeated for 5 different selections of households and the median and maximum of the summed 

flow of every selection of households was determined. This was executed for N ∈ {0,1,11, … ,201}. Method 2 was 

applied in a similar way, however the median-day and max-day of the summed water demand of the N households 

were determined. Then the maximum summed flow was stored. This again was repeated for 5 different selections of 

households and the median was determined for each selection. Finally, this was repeated for the aggregated 

simulated data (to hourly data).   

  
 

 

 

 

 

 

 

 

 

Table 4: Overview methods and data sets 

Data set Method 𝑁 Number of 

repetitions 

Additional information 

BW+WBG Method 1 version 1.1 𝑁 ∈ {0,2, … ,20} 

𝑁 ∈ {0,2, … ,20} 

26 

20 times 26 

Estimate med(Q-max) and not 

max(Q-max)  
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 Method 1 version 1.2 𝑁 ∈ {0,2, … ,20} 

𝑁 ∈ {0,2, … ,20} 

100 

20 times 100 

Estimate med(Q-max) and not 

max(Q-max) 

 Method 1 version 1.3 𝑁 ∈ {0,2, … ,20} 

𝑁 ∈ {0,1, … ,200} 

𝑁 ∈ {0,5, … ,2000} 

100 

100 

100 

Estimate med(Q-max) and not 

max(Q-max) 

BW+WBG 

aggregated 

Method 1 version 1.3 𝑁 ∈ {0,1, … ,20} 100 Estimate med(Q-max) and not 

max(Q-max) 

Vitens Method 2 𝑁 ∈ {0,2, … ,20} 

𝑁 ∈ {0,5, … ,300} 

10  

SIMDEUM Method 1 𝑁 ∈ {0,1, … ,50} 

𝑁 ∈ {0,1,11, … ,201} 

5 

5 

For a random selection of households 

100 Q-max are determined, median and 

maximum of these Q-max are stored 

(this is repeated 5 times) 

SIMDEUM Method 2 𝑁 ∈ {0,1, … ,50} 

𝑁 ∈ {0,1,11, … ,201} 

5 

5 

 

SIMDEUM 

aggregated  

Method 1 𝑁 ∈ {0,1, … ,50} 

𝑁 ∈ {0,1,11, … ,201} 

5 

5 

For a random selection of households 

100 Q-max are determined, median and 

maximum of these Q-max are stored 

(this is repeated 5 times) 

SIMDEUM 

aggregated 

Method 2 𝑁 ∈ {0,1, … ,50} 

𝑁 ∈ {0,1,11, … ,201} 

5 

5 
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5 Results 

The methods as described in Chapter 0 are used to estimate Q-maxmed, Q-maxmax , max(Q-max) and med(Q-max) 

from the data as described in Chapter 0. In Section 5.1 the results from the BW+WBG dataset are described. Then in 

Section 5.2 the results from the Vitens dataset are described. In Section 5.3 the results of the synthetic data 

generated by SIMDEUM are given. Finally, in Section 5.4 all results will be compared. 

5.1 Brabant water and Waterbedrijf Groningen 

The combined and cleaned data set of BW and WBG have been analyzed with method 1 which is described in Section 

4.1. Version 1.1 was executed for 𝑁 ∈ {0,2, … ,20} with ⌊
ndays

∑ narray
⌋ number of runs, which implies that almost all data 

was used. Version 1.2 was executed with 100 runs and for 𝑁 ∈ {0,2, … ,20}. Version 1.3 was executed with 100 runs 

for 𝑁 ∈ {0,2, … ,20}, for 𝑁 ∈ {0,1, … ,200} and for 𝑁 ∈ {0,5, … ,2000}. 

Note, that for both version 1.1 and version 1.2 it holds that the order in which the households are picked influences 

the households that will be chosen in future. To give some insight into the effect of this dependency, version 1.1 and 

version 1.2 were ran 20 times. The results can be observed in Figure 9. As can be seen, the results of version 1.2 

(reusing data for different values of 𝑁) are slightly larger than the results of version 1.1 (no reusing of the data). This 

can be caused by the fact that the high water flows (that are contained in the data set), that are either outliers or 

high water demands are reused in version 1.2 with high probability. Furthermore, it can be observed that the variance 

of the estimates seems to be larger for larger values of 𝑁. This could be explained by the fact that the probability 

that any measured day is used to estimate the Q-max of a large value of 𝑁 is large. Thus, also the probability that a 

high value is used to estimate  the Q-max of a large value of 𝑁 is larger than the probability that is used to estimate 

Q-max of a small value of 𝑁. This problem could be resolved by either using more data, to ensure that the estimates 

of Q-max are more accurate. Furthermore, distinguish outliers and high demands more accurately is left for future 

research.  

 

 
Figure 9: Results of version 1.1 and 1.2 (20 estimates) 

 

The median of the 100 resulting values of all three methods (as described in Section 0) can be found in Figure 10. It 

can be seen that all found estimates of med(Q-max) for any value of 𝑁 > 0 are smaller than the ‘q-square-root-N’ 

rule estimates. This is an indication that the ‘q-square-root-N’ rule overestimates the maximal summed flow on at 

least 50% of the days. Furthermore, all three versions of data sampling method 1 are very close. This is an indication, 

that for 𝑁 ≤ 20 the reuse of the data has no significant effect. As denoted in Section 3.1, the time between two 

consecutive measurements is 1 second. To demonstrate the effect of a larger time increment the data was 

aggregated to hourly data. The result can also be seen in  Figure 9. As can be seen, the resulting estimates are much 
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smaller than the estimates resulting from the data set with time increments of 1 second. This can be explained by 

the fact that the total amount of water used in an hour is rarely the result of a constant very slow flow, but rather a 

few high peaks. If the time between consecutive measurements is thus equal to an hour, the peaks will be much 

lower, due to the averaging of the water demand.   

  

In Figure 11 the estimate of method 1.3 can be found for 𝑁 ∈ {0,1, … ,200} and 100 repetitions per value of 𝑁. It 

can be seen that for larger values of 𝑁 approximately greater than 50, the increase seems to be linear. Currently, 

the WMD assumes the maximum daily flow to be linear with 𝑁 starting from 𝑁 = 200. However, from these 

results it seems that this starts earlier.  

 

In Figure 12 the results of version 1.3 can be found for 𝑁 ∈ {0,5,10, … ,2000}. As can be seen, the results start to  

deviate from what would be expected. For values of 𝑁 > 250 it can be observed that the variance seems to 

increase. Furthermore, for 𝑁 > 750 steps start to form. This can be explained by the fact that for every repetition 

𝑁 out of 2934 measured days are selected. If 𝑁 start to increase and the number of repetitions per value of 𝑁 is 

still equal to 100, a lot of the data is reused (including the high measurements). Since the estimate of med(Q-max) 

is equal to the median of 100 Q-max, if such a high value is contained in only a few of the Q-max this will not 

greatly impact the estimate. However, for larger values of 𝑁 it is likely that the high values are used to estimate 

many Q-max. This will lead the high values to greatly impact the estimate. Note, the interest of this report was to 

analyse the corelation between Q-max and 𝑁 mainly for 𝑁 < 200.    

 

To quantify the correlation between 𝑁 and med(Q-max) multiple functions were fit to the found results from version 

1.3 (for 𝑁 ∈ {0,2, . . ,250}). As described in Section 4.3, a non-linear least squares approach was applied. After finding 

the optimal values of 𝜷, the 𝑟2 was determined. Some of the functions that were fit with the corresponding values 

of the parameters 𝜷 and the found 𝑟2 and MSE can be found in Table 5. Furthermore, the results with the found 

functions can also be observed in Figure 13. As can be seen, all three function are very similar and seem to fit the 

results from the data.  In Figure 14 the same results can be observed, however zoomed in for 𝑁 < 60. Here it can be 

observed that the function  𝑓(𝑁) = 𝑎√𝑁 + 𝑏 ⋅ 𝑁 underestimates the values of med(Q-max).  

 

 

 

Figure 10: Results of version 1 with BW and WBG data set   
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Figure 11: Results of Version 1.3 for 𝑁 ∈ {0,1, … ,200} with BW and 

WBG data set 

Figure 12:  Results of Version 1.3 for 𝑁 ∈ {0,5, … ,2000} with BW 

and WBG data set 
 

Table 5: Results from fitting method 1.3   

Function 𝜷 𝑟2 MSE 

𝑓(𝑁) = 𝑎 log(𝑁 + 1) + 𝑏 ⋅ 𝑁 (
𝑎

𝑏
) = (

0.179

0.009
) 0.9935 0.0045 

𝑓(𝑁) = 𝑎√𝑁 + 𝑏 ⋅ 𝑁 (
𝑎

𝑏
) = (

0.127

0.005
) 0.9904 0.0066 

𝑓(𝑁) = {
𝑎√𝑁     for N>T

𝑎√𝑇 + (𝑁 − 𝑇)
𝑎

2√𝑇
    else

 
(

𝑎

𝑇
) = (

0.169

60.9
) 0.9943 0.0039 

 

 

 
 

 

Overall, the correlation between med(Q-max) and 𝑁 can be described by multiple functions. Since WMD currently 

assumes the 'q-square-root-N' rule for 𝑁 < 200 houses and a linear function for 𝑁 > 200 and the function  

𝑓(𝑁) = {
𝑎√𝑁     for N>T

𝑎√𝑇 + (𝑁 − 𝑇)
𝑎

2√𝑇
    else

 fits the estimates, the rule that will be recommended based on the results 

from the BW+WBG data set is: for 𝑁 < 61 take 0.17√𝑁 and for 𝑁 ≥  61 take 0.01 ⋅ 𝑁 + 0.66. 

 

 

 

Figure 13: Fitted function to results of version 1.3 for 𝑁 ∈ {0,2, … ,250} Figure 14:  Fitted function to results of version 1.3 for 𝑁 ∈

{0,2, … ,60}  
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5.2 Vitens 

The cleaned data set of Vitens is analyzed with method 2 which is described in Section 4.2. This Method was 

implemented for 𝑁 ∈ {0,2, … ,20} and for 𝑁 ∈ {0,5, … ,300} with 10 repetitions. The median of the 10 found 

estimations of Q-maxmed and Q-maxmax.   

The results for 𝑁 ∈ {0,2, … ,20} can be found in Figure 15 and for 𝑁 ∈ {0,5, … ,300} in Figure 16. It can be observed 

that the correlation between the estimated quantities and 𝑁 is fairly linear even for 𝑁 < 61. This can be explained 

by the fact that if hourly data is used which causes all water demand to be averaged over the past hour (in some 

cases over two hours if the water is used at the time of measuring time).  

 

 

  
Figure 15: Results of Method 2 with Vitens data set where 

 𝑁 ∈ {0,2, … ,20} 

Figure 16: Results of Method 2 with Vitens data set where 

 𝑁 ∈ {0,5, … ,300} 

 

In Table 6 the results of fitting three different functions to the found estimates of Q-maxmaxand Q-maxmed can be 

found. The found functions can be found in  Figure 17 and Figure 18 for Q-maxmaxand Q-maxmed  respectively.  It 

can be observed that when fitting a linear function, the 𝑟2 is close to 1. This implies that a linear functions fits the 

found estimates well. However, the 𝑟2 is a bit closer to 1 for both alternative functions as stated in Table 6. Note, 

that the found values of 𝑎 of the function 𝑓(𝑁) = 𝑎√𝑁 + 𝑏 ⋅ 𝑁 in case of the Vitens data set is much smaller than in 

the case of the BW+WBG data sets. Furthermore, the values of 𝑏 are very close. This implies that for smaller values 

of 𝑁 the results from the Vitens data set are more linear (the estimates of Q-maxmed even more than  

Q-maxmax). Also, in the case of  the fitted function being equal to 𝑓(𝑁) = {
𝑎√𝑁     for N>T

𝑎√𝑇 + (𝑁 − 𝑇)
𝑎

2√𝑇
    else

, it can be observed 

that the value of 𝑇 (where it holds that for all 𝑁 > 𝑇 the function is linear) is much smaller than in the case of the BW+WBG data 

set.  
 

Table 6: Results from applying method 2 to Vitens data 

 Estimates of  Q-maxmax Estimates of of  Q-maxmed 

Function 𝜷 𝑟2 MSE 𝜷 𝑟2 MSE 

𝑓(𝑁) = 𝑎 ⋅ 𝑁 𝑎 = 0.0077 0.9750 0.0097 𝑎 = 0.0060 0.9827 0.0046 

𝑓(𝑁) = 𝑎√𝑁 + 𝑏 ⋅ 𝑁 (
𝑎

𝑏
) = (

0.0296

0.0057
) 0.9882 0.0046 (

𝑎

𝑏
) = (

0.0092

0.0054
) 0.9846 0.0041 

𝑓(𝑁)

= {
𝑎√𝑁     for N>T

𝑎√𝑇 + (𝑁 − 𝑇)
𝑎

2√𝑇
    else

 

(
𝑎

𝑇
) = (

0.0650

21.85
) 0.9882 0.0046 (

𝑎

𝑇
) = (

0.0312

7.25
) 0.9843 0.0042 
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Figure 17: Fitted functions to estimation of  Q-maxmax found from Vitens 

data for 𝑁 ∈ {0,5, … ,300} 

Figure 18: Fitted functions to estimation of  Q-maxmed found from Vitens 

data for 𝑁 ∈ {0,5, … ,300} 
 

 

Overall, it seems that the correlation between 𝑁 and the estimates of both Q-maxmed and Q-maxmax can be 

described by linear functions. 

 

5.3 SIMDEUM data 

After estimating Q-maxmed, Q-maxmax , and med(Q-max) using two different data sets, these quantities as well as 

max(Q-max) will be estimated using the data that was created using SIMDEUM. A short description of SIMDEUM as 

well as the details on the SIMDEUM data set can be found in Section 3.3.  

 

The results of the approach for the SIMDEUM data as described in Section 4.4 can be found in Figure 19. As can be 

observed, the aggregated data resulted in much smaller estimates, as was also observed from the estimates using 

real-life data and is thus as expected. Furthermore, it can be noted that the estimate of Q-maxmax (red dots) is much 

smaller than the estimate of max(Q-max) (orange dots). This shows that the found Q-max on max-days is smaller 

than at least 50% of the found Q-max . This shows that the Q-max of a max-day is not necessarily higher than on any 

other random day. Note, that the max-day was determined based on the total water demand of a day. It is important 

to recognize that this is a clear indication that the Q-max of the  max-day of a time span and the maximal Q-max of 

this same time span are not necessarily the same. This could be investigated by looking at the correlation between 

the total water demand of a day and the peak the water demand of that day. Further investigating this correlation is 

left for future research.  

 
Figure 19: Estimates of Q-max𝑚𝑒𝑑, Q-max𝑚𝑎𝑥,, max(Q-max) and med(Q-max) from SIMDEUM data 
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To quantify the correlation between 𝑁 and med(Q-max) and 𝑁 and max(Q-max) multiple functions were fit to the 

found estimates (for 𝑁 ∈ {0,1,11, . . ,201}). As described in Section 4.3, a non-linear least squares approach was 

applied. After finding the optimal values of 𝜷, the 𝑟2 was determined. Some of the functions that were fit with the 

corresponding values of the parameters 𝜷 and the found 𝑟2 and MSE can be found in Table 7. Furthermore, the 

results with the found functions can also be observed in Figure 20 and Figure 21. As can be seen, all three function 

are very similar and seem to fit the results from the data.   

 

 

  
Figure 20: Fitted functions to estimation of  med(Q-max) found from SIMDEUM 
data for 𝑁 ∈ {0,1,11, … ,201} 

Figure 21: Fitted functions to estimation of  max(Q-max) found from SIMDEUM 
data for 𝑁 ∈ {0,1,11, … ,201} 

 

 

 

 

 

 

 
Table 7: Results from applying method 1 to SIMDEUM data 

 Estimates of  med(Q-max) Estimates of of  max(Q-max) 

Function 𝜷 𝑟2 MSE 𝜷 𝑟2 MSE 

𝑓(𝑁) = 𝑎 log(𝑁 + 1) + 𝑏 ⋅ 𝑁 (
𝑎

𝑏
) = (

0.150

0.012
) 0.9947 0.0047 (

𝑎

𝑏
) = (

0.283

0.013
) 0.9879 0.0165 

𝑓(𝑁) = 𝑎√𝑁 + 𝑏 ⋅ 𝑁 (
𝑎

𝑏
) = (

0.111

0.008
) 0.9939 0.0054 (

𝑎

𝑏
) = (

0.211

0.006
) 0.9872 0.0174 

𝑓(𝑁) = {
𝑎√𝑁     for N>T

𝑎√𝑇 + (𝑁 − 𝑇)
𝑎

2√𝑇
    else

 
(

𝑎

𝑇
) = (

0.168

37.2
) 0.9950 0.0044 (

𝑎

𝑇
) = (

0.255

66.0
) 0.9882 0.0160 

 

Overall, the correlation between med(Q-max) and 𝑁  and the correlation between max(Q-max) and 𝑁 can be 

described by multiple functions. Note, that they can be described by the same functions (with different 

parametrizations). Since WMD currently assumes the 'q-square-root-N' rule for 𝑁 < 200 houses and a linear function 

for 𝑁 > 200 and the function  𝑓(𝑁) = {
𝑎√𝑁     for N>T

𝑎√𝑇 + (𝑁 − 𝑇)
𝑎

2√𝑇
    else

 fits the estimates, the rule that will be 

recommended based on the results from the SIMDEUM data set that estimates med(Q-max) for a value of 𝑁 is: for 

𝑁 ≤ 37 take 0.17√𝑁 and for 𝑁 > 37  take 0.01 ⋅ 𝑁 + 0.51. The rule that will be recommended based on the results from 

the SIMDEUM data set that estimates max(Q-max) for a value of 𝑁 is: for 𝑁 ≤ 66 take 0.26√𝑁 and for 𝑁 > 66  take 

0.016 ⋅ 𝑁 + 1.04. 
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5.4 Comparison of results 

In this section the results of the found estimates of Q-maxmed, Q-maxmax , max(Q-max) and med(Q-max) with both 

the BW+WBG data as well as with the SIMDEUM data will be compared. Note, that the results of the Vitens data set 

will not be compared to the results of the SIMDEUM data set. This is left for future research due to time-constraints. 

Furthermore, the main interest of this report to investigate the relation between Q-max and 𝑁 and hourly data 

underestimates the values of Q-max.  

For 𝑁 ∈ {0,1, … ,50} the results of both the SIMDEUM data as well as the results of the BW+WBG data set can be 

found in Figure 22 and Figure 23. In Figure 22 the estimates of med(Q-max) both from using the BW+WBG data as 

well as from using the SIMDEUM data. It can be observed that the estimates are very close. In Figure 23 the estimates 

of Q-maxmed and Q-maxmax from using the SIMDEUM data can be found. It can be observed that the estimates of Q-

maxmed (SIMDEUM data) are close to the estimates of med(Q-max) (BW+WBG data). Furthermore, it can be 

observed that also Q-maxmax (SIMDEUM data) are close to the estimates of med(Q-max) (BW+WBG data). This 

shows again that the max-day does not necessarily have a higher Q-max than the median-day.  

 

Secondly, the estimates found with the SIMDEUM data are again compared to the results of the BW+WBG data set 

for 𝑁 ∈ {0,1,11, … ,201}. The results can be found in Figure 24. It can be observed that for 𝑁 > 60 the estimates of  

Q-maxmed, Q-maxmax , and med(Q-max) based on the SIMDEUM data start to deviate slightly. These estimates start 

to increase slightly faster than the results found from the data set of BW+WBG. Furthermore, for 𝑁 < 25 the 

estimates from SIMDEUM seem to be slightly smaller than the results found from the data set of BW+WBG. Some 

possible explanations of these observations will be given. However, an in depth analysis of this behavior and changes 

to pySIMDEUM to test the possible explanations are left for future research.  

 

 

  
Figure 22 : Comparison of estimates of max(Q-max) and 
med(Q-max) for 𝑁 ∈ {0,1, … ,50} 

Figure 23: Comparison of estimates of Q-maxmed and Q-maxmax  
with med(Q-max) for 𝑁 ∈ {0,1, … ,50} 

 

An explanation of the observation that for 𝑁 < 25 the results from the SIMDEUM data are slightly smaller than the 

results of data could be that all data was collected at households from employees of the water companies BW and 

WBG. This sample of households could be an unrepresentative sample of households throughout the Netherlands. 

Given that at least one person of the household is an adult with a job away from home, changes the probabilities of 

the type of household. As was denoted in chapter 0, the average number of users per household for the BW+WBG 

data set is larger than the average number of users per household that SIMDEUM assumes. This could be a cause for 

the difference between the results of SIMDEUM and the BW+WBG data. Next to a possibly different distribution of 

house types, the working adults work at the same water companies. This could cause correlations in the presence of 

the users, since they might have the same working hours. Which could also cause the estimated med(Q-max) from 
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the data to be higher than the estimated med(Q-max) from the SIMDEUM data. However, note that the difference 

is very small.  

 

An explanation of the observation that for 𝑁 > 60 the results from the SIMDEUM data are higher than the results of 

the data could be that the appliances nowadays use less water than what SIMDEUM uses. It seems that the  slope of 

the linear behavior which occurs for 𝑁 > 37 (SIMDEUM) and for 𝑁 > 61 (BW+WBG) is different for the estimates of 

SIMDEUM as well as for the results of BW+WBG. Exploring this slope and the difference between the slopes is left 

for future research. However, an explanation could be that the data which is used by SIMDEUM to estimate the water 

demand of an end-use was determined in 2006 (Blokker, 2006). These estimations of the intensity of the different 

appliances could be different from the current appliances. Another explanation could be that SIMDEUEM assumes 

that a too big part of total water demand is demanded during peak hours. SIMDEUM assumes that 65% of the water 

is used during peak hours2. If this number would be too large the results from SIMDEUM would be higher than 

expected for larger values of 𝑁. A final explanation would be that if SIMDEUM assumes that the peak hour interval 

to be smaller than in real-life and the same percentage of water is demanded during the peak hours, the estimates 

of SIMDEUM would also be larger for larger values of 𝑁.  

 

 
Figure 24: Comparison of results from SIMDEUM data and estimates of med(Q-max) using BW+WBG data for 𝑁 ∈ {0,1,11, … ,201} 

 

Now the estimates of max(Q-max) that followed from the SIMDEUM data set will be compared to the 90% 

quantile of the Q-max found from the BW+WBG data set using version 1.3. However, as already explained before 

the results will mainly be determined by the few high values of the data set for larger values of 𝑁. The results can 

be observed in Figure 25. As can be seen for small values of 𝑁, approximately for 𝑁 < 30 the estimates of 

max(Q-max) that followed from the BW+WBG data set are close to the estimates of max(Q-max) that followed 

from the SIMDEUM data set. More research should be done to confirm this behavior.  

 

2 Note that the typo as explained in Section 3.3.1 causes this percentage to be smaller.  
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Figure 25: Comparison of results from SIMDEUM data and estimates of max(Q-max) using BW+WBG data for 𝑁 ∈ {0,1,11, … ,201} 

 

Overall, the estimates found from the SIMDEUM data are close to the estimates that resulted from the BW+WBG 

data. However, for 𝑁 > 60 the results from the SIMDEUM data start to increase slightly faster. This results into the 

differences between the estimates to deviate more for larger values of 𝑁.  
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6 Conclusion and Discussion 

This report reinvestigates the correlation between Q-max (the maximal daily flow of a pipe) and 𝑁 (the number of 

households supplied by this pipe). As stated by Buchberger et al. (Buchberger, Blokker, & Cole, 2012) the Netherlands 

used the q-squareroot-N rule. An alternative was developed based on simulation results in (E.J.M. Blokker, 2010). 

This report focuses on whether these rules describe the correlation between Q-max and 𝑁 correctly or if other rules 

might describe the correlation more accurately. 

6.1 Conclusion 

• The  q-squareroot-N rule that is used in the Netherlands (with Q= 0.32 if FU=15) overestimates the 

med(Q-max), Q-maxmed, Q-maxmax and max(Q-max) for at least 𝑁 > 10. 

• Applying the in Section 0 described methods to the data described in Section 0 showed that Q-maxmax and 

max(Q-max) are not the same for these data sets. This implies that the Q-max on the maximum day is 

smaller than the maximum of a set of Q-max. 

• If the measuring frequency is an hour (or approximately every hour), the estimates of med(Q-max), 

Q-maxmed, Q-maxmax and max(Q-max) are a lot smaller than if the measuring frequency is a second. Since 

all peaks are spread out over the last hour, these will not be representative results of the actual maximal 

flow.  

• If only a small amount of data is available, one could reuse the data to increase the preciseness of the results 

(decrease the variance of the estimates). However, if too much of the data is reused the results start to 

deviate as seen in Figure 12 where the bias starts to increase for larger values of 𝑁. Thus, a trade-off exists 

between a possible bias and the preciseness of the results. 

• The difference between the results that followed from the data set of BW+WBG and the results from the 

SIMDEUM data set are insignificant for 𝑁 < 75. However, for 𝑁 > 75 the estimates of the SIMDEUM data 

set deviate slightly from the estimates based on the data set BW+WBG.  

• Multiple functions were fit on the found estimates. All fits presented in Section 0 fit the estimates well based 

on the MSE and 𝑟2 with respect to the MSE and 𝑟2 the differences between the fits are insignificant. A 

function that can be used for an estimate of  med(Q-max) and max(Q-max) with different constants is 

𝑓(𝑁) = {
𝑎√𝑁     for N>T

𝑎√𝑇 + (𝑁 − 𝑇)
𝑎

2√𝑇
    else

.  This function is equal to the q-squareroot-N rule for 𝑁 ≤ 𝑇 for some 

number of fixture units and for 𝑁 > 𝑇 the function is linear with the same slope.  From the estimates of 

med(Q-max)that followed from the BW+WBG data set the following rule resulted: 

For 𝑁 < 61 take 0.17√𝑁 and for 𝑁 ≥  61 take 0.01 ⋅ 𝑁 + 0.66. 

From the estimates of max(Q-max) that followed from the SIMDEUM data set the following rule resulted: 

For 𝑁 ≤ 66 take 0.26√𝑁 and for 𝑁 > 66 take 0.016 ⋅ 𝑁 + 1.04.  

6.2 Discussion and future research 

• To estimate the Q-max on a ‘maximal day’ the maximum of a set of Q-max was taken. However, in the case 

that possible outliers are contained in the data set, the maximum is likely to contain this outlier. Therefore 

it might be more sensible to take the 99% quantile. 

• In future more research could be done into the correlation between the total water demand of a day and 

the peak of the total water demand (possibly for different values of 𝑁). This will create understanding about 

the difference between  Q-maxmax and max(Q-max).  
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• It was concluded that a measuring frequency of one hour greatly decreases the estimates of med(Q-max), 

Q-maxmed, Q-maxmax and max(Q-max). However, in future one could investigate if it would be possible to 

disaggregate the hourly data and if this would lead to a more precise estimates. 

• The estimates of med(Q-max) that followed from version 1.1 and 1.2 of data sampling method 1 are 

dependent on the order in which the days of the different households are selected. Therefore, rerunning 

these versions could give slightly different results. For these methods to work more accurately, more data 

should be used to increase the accuracy of every single the estimates.  

• In future the data set of BW+WBG could be filtered better. One could investigate how to distinguish outliers 

and high water demands in the data set. This would result in more accurate results. This would also greatly 

improve the accuracy of the estimates of max(Q-max). 

• More research could be done into the tradeoff between the accuracy of every estimate and the bias that 

occurs if the data is reused. Furthermore, one could also investigate what an acceptable amount of reuse 

of the demand patterns would be. 

•  In this report the default statistics of SIMDEUM were used. However, the data set of BW+WBG was the 

result of measurements in the homes of employees of the water companies. Also, the data set of Vitens was 

the result of measurements in Westeinde (Leeuwarden). However, this might not be representative of the 

Netherlands as a whole. Whereas the default statistics of SIMDEUM are based on total of the Netherlands. 

Therefore, changing the statistics of SIMDEUM could lead to a better comparison between the results of the 

real-life data sets and the synthetic one. 

•  The default statistics used by SIMDEUM were determined in (Blokker, 2006). In future this research could 

be updated (for example, add new appliances to the end-use and update the household and end-use 

statistics). 

• In future a comparison could be made between the estimates following from the Vitens data set and the 

estimates following from the SIMDEUM data set. This would validate that SIMDEUM accurately mimics 

hourly peaks within a water demand pattern.   

• In future, the found correlation between med(Q-max) and 𝑁 and the correlation between max(Q-max) 

and 𝑁 should be validated with other data sets (with a measurement frequency of one second).  To ensure 

that this correlation holds in more generality. Note, that currently (November 2022) this data is unavailable 

to the author.  
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8 Appendix 

Pseudocode 1.2 

 
Algorithm 3: method 1.2 
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Algorithm 4: Method 1.3 

 
 

 

 
 

Table 8: SIMDEUM statistics House 

Household 

type 

Household type 

probabilities 

𝑁 Gender probabilities Age 

probabilities 

Probability out-of-home 

job 

 

One-

person 

34 1 male=0.46 

female=0.54 

child = 0  

teen = 0  

adult = 0.7      

senior = 0.3 

male = 0.675 

female = 0.524 

Two-

person 

30 2 (male,male)=0.025 

(male,female)=0.95 

(female,female)=0.02

5 

child = 0  

teen = 0  

adult = 0.7      

senior = 0.3 

both = 0.494 

only male = 0.26 

only female =0.063 

neither person = 0.183 

Family 36 𝐸[𝑁]

= 3.75 

(male)=0.5 

(female)=0.5 

child = 0.25  

teen = 0.165  

adult = 0.585     

senior = 0 

both = 0.394 

only male = 0.523 

only female =0.031 

neither person = 0.052 

 


